Brain Tumor Classification Using Deep Neural Network and Transfer Learning
In the field of medical imaging, the classification of brain tumors based on histopathological analysis is a laborious and traditional approach. To address this issue, the use of deep learning techniques, specifically Convolutional Neural Networks (CNNs), has become a popular trend in research and d...
Gespeichert in:
Veröffentlicht in: | Brain topography 2023-05, Vol.36 (3), p.305-318 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 3 |
container_start_page | 305 |
container_title | Brain topography |
container_volume | 36 |
creator | Kumar, Sandeep Choudhary, Shilpa Jain, Arpit Singh, Karan Ahmadian, Ali Bajuri, Mohd Yazid |
description | In the field of medical imaging, the classification of brain tumors based on histopathological analysis is a laborious and traditional approach. To address this issue, the use of deep learning techniques, specifically Convolutional Neural Networks (CNNs), has become a popular trend in research and development. Our proposed solution is a novel Convolutional Neural Network that leverages transfer learning to classify brain tumors in MRI images as benign or malignant with high accuracy. We evaluated the performance of our proposed model against several existing pre-trained networks, including Res-Net, Alex-Net, U-Net, and VGG-16. Our results showed a significant improvement in prediction accuracy, precision, recall, and F1-score, respectively, compared to the existing methods. Our proposed method achieved a benign and malignant classification accuracy of 99.30 and 98.40% using improved Res-Net 50. Our proposed system enhances image fusion quality and has the potential to aid in more accurate diagnoses. |
doi_str_mv | 10.1007/s10548-023-00953-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2801976232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801976232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-104b47e39b3ed3318d69e04f1e96a288e9208d43357f8fbd91ddd599e058fb3b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNlO4niE8q0Klna2nPhSpaROsRMh_j2GFJAYWO50uudeWw8hxxTOKYC48BTSJI-B8RhApqHukDFNBY8zIdkuGUMus7DOxIgceL8CAC6F2CcjLiCjqaRj8njldG2jeb9uXTRttPd1VZe6q1sbLXxtl9E14iZ6wt7pJrTurXUvkbYmmjttfYUumqF2NpCHZK_SjcejbZ-Qxe3NfHofz57vHqaXs7hMEtrFFJIiEchlwdFwTnOTSYSkoigzzfIcJYPcJJynosqrwkhqjEllYNIw8oJPyNmQu3Hta4--U-val9g02mLbe8VyoFJkjLOAnv5BV23vbPhdoCiwFHhGA8UGqnSt9w4rtXH1Wrt3RUF9mlaDaRVMqy_TCsLRyTa6L9Zofk6-1QaAD4APK7tE9_v2P7EfYXeHUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810250361</pqid></control><display><type>article</type><title>Brain Tumor Classification Using Deep Neural Network and Transfer Learning</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Sandeep ; Choudhary, Shilpa ; Jain, Arpit ; Singh, Karan ; Ahmadian, Ali ; Bajuri, Mohd Yazid</creator><creatorcontrib>Kumar, Sandeep ; Choudhary, Shilpa ; Jain, Arpit ; Singh, Karan ; Ahmadian, Ali ; Bajuri, Mohd Yazid</creatorcontrib><description>In the field of medical imaging, the classification of brain tumors based on histopathological analysis is a laborious and traditional approach. To address this issue, the use of deep learning techniques, specifically Convolutional Neural Networks (CNNs), has become a popular trend in research and development. Our proposed solution is a novel Convolutional Neural Network that leverages transfer learning to classify brain tumors in MRI images as benign or malignant with high accuracy. We evaluated the performance of our proposed model against several existing pre-trained networks, including Res-Net, Alex-Net, U-Net, and VGG-16. Our results showed a significant improvement in prediction accuracy, precision, recall, and F1-score, respectively, compared to the existing methods. Our proposed method achieved a benign and malignant classification accuracy of 99.30 and 98.40% using improved Res-Net 50. Our proposed system enhances image fusion quality and has the potential to aid in more accurate diagnoses.</description><identifier>ISSN: 0896-0267</identifier><identifier>EISSN: 1573-6792</identifier><identifier>DOI: 10.1007/s10548-023-00953-0</identifier><identifier>PMID: 37061591</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain research ; Brain tumors ; Classification ; Computer science ; Datasets ; Deep learning ; Fuzzy logic ; Humans ; Machine Learning ; Magnetic Resonance Imaging ; Medical imaging ; Mental Recall ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Neurology ; Neurosciences ; Original Paper ; Psychiatry ; R&D ; Research & development ; Topography ; Transfer learning ; Tumors</subject><ispartof>Brain topography, 2023-05, Vol.36 (3), p.305-318</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-104b47e39b3ed3318d69e04f1e96a288e9208d43357f8fbd91ddd599e058fb3b3</citedby><cites>FETCH-LOGICAL-c441t-104b47e39b3ed3318d69e04f1e96a288e9208d43357f8fbd91ddd599e058fb3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10548-023-00953-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10548-023-00953-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37061591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Choudhary, Shilpa</creatorcontrib><creatorcontrib>Jain, Arpit</creatorcontrib><creatorcontrib>Singh, Karan</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Bajuri, Mohd Yazid</creatorcontrib><title>Brain Tumor Classification Using Deep Neural Network and Transfer Learning</title><title>Brain topography</title><addtitle>Brain Topogr</addtitle><addtitle>Brain Topogr</addtitle><description>In the field of medical imaging, the classification of brain tumors based on histopathological analysis is a laborious and traditional approach. To address this issue, the use of deep learning techniques, specifically Convolutional Neural Networks (CNNs), has become a popular trend in research and development. Our proposed solution is a novel Convolutional Neural Network that leverages transfer learning to classify brain tumors in MRI images as benign or malignant with high accuracy. We evaluated the performance of our proposed model against several existing pre-trained networks, including Res-Net, Alex-Net, U-Net, and VGG-16. Our results showed a significant improvement in prediction accuracy, precision, recall, and F1-score, respectively, compared to the existing methods. Our proposed method achieved a benign and malignant classification accuracy of 99.30 and 98.40% using improved Res-Net 50. Our proposed system enhances image fusion quality and has the potential to aid in more accurate diagnoses.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain research</subject><subject>Brain tumors</subject><subject>Classification</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fuzzy logic</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Mental Recall</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Psychiatry</subject><subject>R&D</subject><subject>Research & development</subject><subject>Topography</subject><subject>Transfer learning</subject><subject>Tumors</subject><issn>0896-0267</issn><issn>1573-6792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwNlO4niE8q0Klna2nPhSpaROsRMh_j2GFJAYWO50uudeWw8hxxTOKYC48BTSJI-B8RhApqHukDFNBY8zIdkuGUMus7DOxIgceL8CAC6F2CcjLiCjqaRj8njldG2jeb9uXTRttPd1VZe6q1sbLXxtl9E14iZ6wt7pJrTurXUvkbYmmjttfYUumqF2NpCHZK_SjcejbZ-Qxe3NfHofz57vHqaXs7hMEtrFFJIiEchlwdFwTnOTSYSkoigzzfIcJYPcJJynosqrwkhqjEllYNIw8oJPyNmQu3Hta4--U-val9g02mLbe8VyoFJkjLOAnv5BV23vbPhdoCiwFHhGA8UGqnSt9w4rtXH1Wrt3RUF9mlaDaRVMqy_TCsLRyTa6L9Zofk6-1QaAD4APK7tE9_v2P7EfYXeHUg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kumar, Sandeep</creator><creator>Choudhary, Shilpa</creator><creator>Jain, Arpit</creator><creator>Singh, Karan</creator><creator>Ahmadian, Ali</creator><creator>Bajuri, Mohd Yazid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20230501</creationdate><title>Brain Tumor Classification Using Deep Neural Network and Transfer Learning</title><author>Kumar, Sandeep ; Choudhary, Shilpa ; Jain, Arpit ; Singh, Karan ; Ahmadian, Ali ; Bajuri, Mohd Yazid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-104b47e39b3ed3318d69e04f1e96a288e9208d43357f8fbd91ddd599e058fb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain research</topic><topic>Brain tumors</topic><topic>Classification</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fuzzy logic</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Mental Recall</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Psychiatry</topic><topic>R&D</topic><topic>Research & development</topic><topic>Topography</topic><topic>Transfer learning</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Choudhary, Shilpa</creatorcontrib><creatorcontrib>Jain, Arpit</creatorcontrib><creatorcontrib>Singh, Karan</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Bajuri, Mohd Yazid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain topography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sandeep</au><au>Choudhary, Shilpa</au><au>Jain, Arpit</au><au>Singh, Karan</au><au>Ahmadian, Ali</au><au>Bajuri, Mohd Yazid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Tumor Classification Using Deep Neural Network and Transfer Learning</atitle><jtitle>Brain topography</jtitle><stitle>Brain Topogr</stitle><addtitle>Brain Topogr</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>36</volume><issue>3</issue><spage>305</spage><epage>318</epage><pages>305-318</pages><issn>0896-0267</issn><eissn>1573-6792</eissn><abstract>In the field of medical imaging, the classification of brain tumors based on histopathological analysis is a laborious and traditional approach. To address this issue, the use of deep learning techniques, specifically Convolutional Neural Networks (CNNs), has become a popular trend in research and development. Our proposed solution is a novel Convolutional Neural Network that leverages transfer learning to classify brain tumors in MRI images as benign or malignant with high accuracy. We evaluated the performance of our proposed model against several existing pre-trained networks, including Res-Net, Alex-Net, U-Net, and VGG-16. Our results showed a significant improvement in prediction accuracy, precision, recall, and F1-score, respectively, compared to the existing methods. Our proposed method achieved a benign and malignant classification accuracy of 99.30 and 98.40% using improved Res-Net 50. Our proposed system enhances image fusion quality and has the potential to aid in more accurate diagnoses.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37061591</pmid><doi>10.1007/s10548-023-00953-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-0267 |
ispartof | Brain topography, 2023-05, Vol.36 (3), p.305-318 |
issn | 0896-0267 1573-6792 |
language | eng |
recordid | cdi_proquest_miscellaneous_2801976232 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Algorithms Biomedical and Life Sciences Biomedicine Brain cancer Brain Neoplasms - diagnostic imaging Brain research Brain tumors Classification Computer science Datasets Deep learning Fuzzy logic Humans Machine Learning Magnetic Resonance Imaging Medical imaging Mental Recall Neural networks Neural Networks, Computer Neuroimaging Neurology Neurosciences Original Paper Psychiatry R&D Research & development Topography Transfer learning Tumors |
title | Brain Tumor Classification Using Deep Neural Network and Transfer Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Tumor%20Classification%20Using%20Deep%20Neural%20Network%20and%20Transfer%20Learning&rft.jtitle=Brain%20topography&rft.au=Kumar,%20Sandeep&rft.date=2023-05-01&rft.volume=36&rft.issue=3&rft.spage=305&rft.epage=318&rft.pages=305-318&rft.issn=0896-0267&rft.eissn=1573-6792&rft_id=info:doi/10.1007/s10548-023-00953-0&rft_dat=%3Cproquest_cross%3E2801976232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810250361&rft_id=info:pmid/37061591&rfr_iscdi=true |