Global robust stability of a class of discrete-time interval neural networks
This paper is concerned with global robust stability of a general class of discrete-time interval neural networks which contain time-invariant uncertain parameters with their values being unknown but bounded in given compact sets. We first introduce the concept of diagonally constrained interval neu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-01, Vol.53 (1), p.129-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with global robust stability of a general class of discrete-time interval neural networks which contain time-invariant uncertain parameters with their values being unknown but bounded in given compact sets. We first introduce the concept of diagonally constrained interval neural networks and present a necessary and sufficient condition for global robust stability of the interval networks regardless of the bounds of nondiagonal uncertain parameters of state feedback and connection weight matrices. Then we extend the result to general interval neural networks. Finally, simulation results illustrate the characteristics of the main results. |
---|---|
ISSN: | 1549-8328 1057-7122 1558-0806 |
DOI: | 10.1109/TCSI.2005.854288 |