Global robust stability of a class of discrete-time interval neural networks

This paper is concerned with global robust stability of a general class of discrete-time interval neural networks which contain time-invariant uncertain parameters with their values being unknown but bounded in given compact sets. We first introduce the concept of diagonally constrained interval neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-01, Vol.53 (1), p.129-138
Hauptverfasser: Sanqing Hu, Sanqing Hu, Jun Wang, Jun Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with global robust stability of a general class of discrete-time interval neural networks which contain time-invariant uncertain parameters with their values being unknown but bounded in given compact sets. We first introduce the concept of diagonally constrained interval neural networks and present a necessary and sufficient condition for global robust stability of the interval networks regardless of the bounds of nondiagonal uncertain parameters of state feedback and connection weight matrices. Then we extend the result to general interval neural networks. Finally, simulation results illustrate the characteristics of the main results.
ISSN:1549-8328
1057-7122
1558-0806
DOI:10.1109/TCSI.2005.854288