Lossless compression of color mosaic images

Lossless compression of color mosaic images poses a unique and interesting problem of spectral decorrelation of spatially interleaved R, G, B samples. We investigate reversible lossless spectral-spatial transforms that can remove statistical redundancies in both spectral and spatial domains and disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-06, Vol.15 (6), p.1379-1388
Hauptverfasser: Zhang, Ning, Wu, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lossless compression of color mosaic images poses a unique and interesting problem of spectral decorrelation of spatially interleaved R, G, B samples. We investigate reversible lossless spectral-spatial transforms that can remove statistical redundancies in both spectral and spatial domains and discover that a particular wavelet decomposition scheme, called Mallat wavelet packet transform, is ideally suited to the task of decorrelating color mosaic data. We also propose a low-complexity adaptive context-based Golomb-Rice coding technique to compress the coefficients of Mallat wavelet packet transform. The lossless compression performance of the proposed method on color mosaic images is apparently the best so far among the existing lossless image codecs.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2005.871116