Strong solitary internal waves in a 2.5-layer model
A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a c...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2003-01, Vol.474, p.85-94 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 85 |
container_title | Journal of fluid mechanics |
container_volume | 474 |
creator | VORONOVICH, ALEXANDER G. |
description | A theoretical model for internal solitary waves for stratification consisting of two
layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density
jump at the boundary between layers (‘2.5-layer model’) is presented. The equation
of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N
is linear, and nonlinearity appears due only to boundary conditions between layers.
This allows one to obtain in the case of long waves a single ordinary differential
equation for an internal solitary wave profile. In the case of nearly homogeneous
layers the solitons obtained here coincide with the solitons calculated by Choi &
Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the
general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently
strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The
results are in reasonable agreement with experimental data. |
doi_str_mv | 10.1017/S0022112002002744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28017527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002002744</cupid><sourcerecordid>1399071671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEDfCuCvlV389E0jyqeCgeip_gY9nrpUe21mvT8-Pem3KGgiBBYwszOzgxjewhHCKiPxwCcI_I44tNSrrEBysykOpNqnQ16OO3xTbYVwiMACjB6wMS4820zS0JbVx35j6RqOucbqpM3enUhfhNK-JFKa_pwPpm3U1fvsI2S6uB2V3Ob3Q_P784u09H1xdXZySgtpJRdqoGLrDTOCUOYIymjSFFJE0MlByyIAyEZJJwKpyb5tEQ-yUuthYRM5kZss8Ol7rNvXxYudHZehcLVNTWuXQTL85hccf0vEbWWnIOIxP0fxMd20aeNYggGIMP-LC5JhW9D8K60z76ax24sgu3Ltr_KjjsHK2EKBdWlp6aowveiVNJkmkdeuuRVoXPvXzj5J5tpoZXNLm7s8OH2FPLhyPbJxMoLzSe-ms7ct-O_3XwCWZWZMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210900619</pqid></control><display><type>article</type><title>Strong solitary internal waves in a 2.5-layer model</title><source>Cambridge Journals</source><creator>VORONOVICH, ALEXANDER G.</creator><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><description>A theoretical model for internal solitary waves for stratification consisting of two
layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density
jump at the boundary between layers (‘2.5-layer model’) is presented. The equation
of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N
is linear, and nonlinearity appears due only to boundary conditions between layers.
This allows one to obtain in the case of long waves a single ordinary differential
equation for an internal solitary wave profile. In the case of nearly homogeneous
layers the solitons obtained here coincide with the solitons calculated by Choi &
Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the
general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently
strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The
results are in reasonable agreement with experimental data.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002002744</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Internal waves ; Physics of the oceans ; Solitary waves</subject><ispartof>Journal of fluid mechanics, 2003-01, Vol.474, p.85-94</ispartof><rights>2003 Cambridge University Press</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002002744/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14549672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><title>Strong solitary internal waves in a 2.5-layer model</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A theoretical model for internal solitary waves for stratification consisting of two
layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density
jump at the boundary between layers (‘2.5-layer model’) is presented. The equation
of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N
is linear, and nonlinearity appears due only to boundary conditions between layers.
This allows one to obtain in the case of long waves a single ordinary differential
equation for an internal solitary wave profile. In the case of nearly homogeneous
layers the solitons obtained here coincide with the solitons calculated by Choi &
Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the
general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently
strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The
results are in reasonable agreement with experimental data.</description><subject>Boundary conditions</subject><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Internal waves</subject><subject>Physics of the oceans</subject><subject>Solitary waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUF1LxDAQDKLg-fEDfCuCvlV389E0jyqeCgeip_gY9nrpUe21mvT8-Pem3KGgiBBYwszOzgxjewhHCKiPxwCcI_I44tNSrrEBysykOpNqnQ16OO3xTbYVwiMACjB6wMS4820zS0JbVx35j6RqOucbqpM3enUhfhNK-JFKa_pwPpm3U1fvsI2S6uB2V3Ob3Q_P784u09H1xdXZySgtpJRdqoGLrDTOCUOYIymjSFFJE0MlByyIAyEZJJwKpyb5tEQ-yUuthYRM5kZss8Ol7rNvXxYudHZehcLVNTWuXQTL85hccf0vEbWWnIOIxP0fxMd20aeNYggGIMP-LC5JhW9D8K60z76ax24sgu3Ltr_KjjsHK2EKBdWlp6aowveiVNJkmkdeuuRVoXPvXzj5J5tpoZXNLm7s8OH2FPLhyPbJxMoLzSe-ms7ct-O_3XwCWZWZMQ</recordid><startdate>20030110</startdate><enddate>20030110</enddate><creator>VORONOVICH, ALEXANDER G.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030110</creationdate><title>Strong solitary internal waves in a 2.5-layer model</title><author>VORONOVICH, ALEXANDER G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Boundary conditions</topic><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Internal waves</topic><topic>Physics of the oceans</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VORONOVICH, ALEXANDER G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong solitary internal waves in a 2.5-layer model</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2003-01-10</date><risdate>2003</risdate><volume>474</volume><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A theoretical model for internal solitary waves for stratification consisting of two
layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density
jump at the boundary between layers (‘2.5-layer model’) is presented. The equation
of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N
is linear, and nonlinearity appears due only to boundary conditions between layers.
This allows one to obtain in the case of long waves a single ordinary differential
equation for an internal solitary wave profile. In the case of nearly homogeneous
layers the solitons obtained here coincide with the solitons calculated by Choi &
Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the
general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently
strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The
results are in reasonable agreement with experimental data.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002002744</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2003-01, Vol.474, p.85-94 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_28017527 |
source | Cambridge Journals |
subjects | Boundary conditions Dynamics of the ocean (upper and deep oceans) Earth, ocean, space Exact sciences and technology External geophysics Internal waves Physics of the oceans Solitary waves |
title | Strong solitary internal waves in a 2.5-layer model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20solitary%20internal%20waves%20in%20a%202.5-layer%20model&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=VORONOVICH,%20ALEXANDER%20G.&rft.date=2003-01-10&rft.volume=474&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002002744&rft_dat=%3Cproquest_cross%3E1399071671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210900619&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002002744&rfr_iscdi=true |