Strong solitary internal waves in a 2.5-layer model

A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2003-01, Vol.474, p.85-94
1. Verfasser: VORONOVICH, ALEXANDER G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 85
container_title Journal of fluid mechanics
container_volume 474
creator VORONOVICH, ALEXANDER G.
description A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N is linear, and nonlinearity appears due only to boundary conditions between layers. This allows one to obtain in the case of long waves a single ordinary differential equation for an internal solitary wave profile. In the case of nearly homogeneous layers the solitons obtained here coincide with the solitons calculated by Choi & Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The results are in reasonable agreement with experimental data.
doi_str_mv 10.1017/S0022112002002744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28017527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002002744</cupid><sourcerecordid>1399071671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEDfCuCvlV389E0jyqeCgeip_gY9nrpUe21mvT8-Pem3KGgiBBYwszOzgxjewhHCKiPxwCcI_I44tNSrrEBysykOpNqnQ16OO3xTbYVwiMACjB6wMS4820zS0JbVx35j6RqOucbqpM3enUhfhNK-JFKa_pwPpm3U1fvsI2S6uB2V3Ob3Q_P784u09H1xdXZySgtpJRdqoGLrDTOCUOYIymjSFFJE0MlByyIAyEZJJwKpyb5tEQ-yUuthYRM5kZss8Ol7rNvXxYudHZehcLVNTWuXQTL85hccf0vEbWWnIOIxP0fxMd20aeNYggGIMP-LC5JhW9D8K60z76ax24sgu3Ltr_KjjsHK2EKBdWlp6aowveiVNJkmkdeuuRVoXPvXzj5J5tpoZXNLm7s8OH2FPLhyPbJxMoLzSe-ms7ct-O_3XwCWZWZMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210900619</pqid></control><display><type>article</type><title>Strong solitary internal waves in a 2.5-layer model</title><source>Cambridge Journals</source><creator>VORONOVICH, ALEXANDER G.</creator><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><description>A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N is linear, and nonlinearity appears due only to boundary conditions between layers. This allows one to obtain in the case of long waves a single ordinary differential equation for an internal solitary wave profile. In the case of nearly homogeneous layers the solitons obtained here coincide with the solitons calculated by Choi &amp; Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The results are in reasonable agreement with experimental data.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002002744</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Internal waves ; Physics of the oceans ; Solitary waves</subject><ispartof>Journal of fluid mechanics, 2003-01, Vol.474, p.85-94</ispartof><rights>2003 Cambridge University Press</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002002744/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14549672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><title>Strong solitary internal waves in a 2.5-layer model</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N is linear, and nonlinearity appears due only to boundary conditions between layers. This allows one to obtain in the case of long waves a single ordinary differential equation for an internal solitary wave profile. In the case of nearly homogeneous layers the solitons obtained here coincide with the solitons calculated by Choi &amp; Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The results are in reasonable agreement with experimental data.</description><subject>Boundary conditions</subject><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Internal waves</subject><subject>Physics of the oceans</subject><subject>Solitary waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUF1LxDAQDKLg-fEDfCuCvlV389E0jyqeCgeip_gY9nrpUe21mvT8-Pem3KGgiBBYwszOzgxjewhHCKiPxwCcI_I44tNSrrEBysykOpNqnQ16OO3xTbYVwiMACjB6wMS4820zS0JbVx35j6RqOucbqpM3enUhfhNK-JFKa_pwPpm3U1fvsI2S6uB2V3Ob3Q_P784u09H1xdXZySgtpJRdqoGLrDTOCUOYIymjSFFJE0MlByyIAyEZJJwKpyb5tEQ-yUuthYRM5kZss8Ol7rNvXxYudHZehcLVNTWuXQTL85hccf0vEbWWnIOIxP0fxMd20aeNYggGIMP-LC5JhW9D8K60z76ax24sgu3Ltr_KjjsHK2EKBdWlp6aowveiVNJkmkdeuuRVoXPvXzj5J5tpoZXNLm7s8OH2FPLhyPbJxMoLzSe-ms7ct-O_3XwCWZWZMQ</recordid><startdate>20030110</startdate><enddate>20030110</enddate><creator>VORONOVICH, ALEXANDER G.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030110</creationdate><title>Strong solitary internal waves in a 2.5-layer model</title><author>VORONOVICH, ALEXANDER G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-70236f9ee39a181a595a5afab9af201ca20a1a91a1d3e5b8df12b8f7734064893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Boundary conditions</topic><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Internal waves</topic><topic>Physics of the oceans</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VORONOVICH, ALEXANDER G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VORONOVICH, ALEXANDER G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong solitary internal waves in a 2.5-layer model</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2003-01-10</date><risdate>2003</risdate><volume>474</volume><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A theoretical model for internal solitary waves for stratification consisting of two layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density jump at the boundary between layers (‘2.5-layer model’) is presented. The equation of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N is linear, and nonlinearity appears due only to boundary conditions between layers. This allows one to obtain in the case of long waves a single ordinary differential equation for an internal solitary wave profile. In the case of nearly homogeneous layers the solitons obtained here coincide with the solitons calculated by Choi &amp; Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently strong solitons could also possess a recirculating core (at least, as a formal solution). The model was applied to the data collected during the COPE experiment. The results are in reasonable agreement with experimental data.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002002744</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2003-01, Vol.474, p.85-94
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_28017527
source Cambridge Journals
subjects Boundary conditions
Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Internal waves
Physics of the oceans
Solitary waves
title Strong solitary internal waves in a 2.5-layer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20solitary%20internal%20waves%20in%20a%202.5-layer%20model&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=VORONOVICH,%20ALEXANDER%20G.&rft.date=2003-01-10&rft.volume=474&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002002744&rft_dat=%3Cproquest_cross%3E1399071671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210900619&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002002744&rfr_iscdi=true