Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening

Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2003-05, Vol.108 (B5), p.n/a
Hauptverfasser: Hopper, John R., Dahl-Jensen, Trine, Holbrook, W. Steven, Larsen, Hans Christian, Lizarralde, Dan, Korenaga, Jun, Kent, Graham M., Kelemen, Peter B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B5
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 108
creator Hopper, John R.
Dahl-Jensen, Trine
Holbrook, W. Steven
Larsen, Hans Christian
Lizarralde, Dan
Korenaga, Jun
Kent, Graham M.
Kelemen, Peter B.
description Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.
doi_str_mv 10.1029/2002JB001996
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28013845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28013845</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEEqvSGw_gC4gDgbGd2Am3tpTQVbVIFOjRMs6kNSROajuCfUDeC6epgFPxxZrR9_8znnGWPaXwigKrXzMAtj0GoHUtHmQbRkuRMwbsYbYBWlQ5MCYfZ4chfIN0ilIUQDfZr4voZxNnj2TsSLxGcnFKGo_oeu1aMmh_ZR3p_DiQgDYM1hCPXY8m2tGRBUmh12vY6qjfkLNh6q3RSyaQbvTE6WDQRRImj7q17oosIXoS5q_BtugM3jrpsB8GjD7VMH4OUfdEG-Nx9Z79otyNPl6To5i6i4kbJ3Qp_SR71Ok-4OHdfZB9fnf66eR9fv6hOTs5Os91yWqaS95qzgqTJgRtaUrGhUSU0GloW2E6iYxzzjpGW1EITqHiRV1RmTgqOKv5QfZ89Z38eDNjiGqw6W196gbHOShWAeVVUf4XpFIIRiuRwBf3gyWjBfBaLMVfrqjxYwhp7GryNi1oryio5Quof79Awp_dOafx6z4tyRkb_mqKWlJ-2ypfuR-2x_29nmrbfDymvOQ0qfJVZUPEn39U2n9XQnJZqstdoyrYNc3l9ot6y38DWJjQpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521403969</pqid></control><display><type>article</type><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</creator><creatorcontrib>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</creatorcontrib><description>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2002JB001996</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Applied geophysics ; asymmetric spreading ; continental breakup ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Greenland margin ; Internal geophysics ; mantle dynamics ; Marine ; Solid-earth geophysics, tectonophysics, gravimetry ; Tectonics. Structural geology. Plate tectonics ; volcanic rifted margin</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2003-05, Vol.108 (B5), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</citedby><cites>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JB001996$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JB001996$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11516,27926,27927,45576,45577,46411,46470,46835,46894</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14971345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopper, John R.</creatorcontrib><creatorcontrib>Dahl-Jensen, Trine</creatorcontrib><creatorcontrib>Holbrook, W. Steven</creatorcontrib><creatorcontrib>Larsen, Hans Christian</creatorcontrib><creatorcontrib>Lizarralde, Dan</creatorcontrib><creatorcontrib>Korenaga, Jun</creatorcontrib><creatorcontrib>Kent, Graham M.</creatorcontrib><creatorcontrib>Kelemen, Peter B.</creatorcontrib><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</description><subject>Applied geophysics</subject><subject>asymmetric spreading</subject><subject>continental breakup</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Greenland margin</subject><subject>Internal geophysics</subject><subject>mantle dynamics</subject><subject>Marine</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Tectonics. Structural geology. Plate tectonics</subject><subject>volcanic rifted margin</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhiMEEqvSGw_gC4gDgbGd2Am3tpTQVbVIFOjRMs6kNSROajuCfUDeC6epgFPxxZrR9_8znnGWPaXwigKrXzMAtj0GoHUtHmQbRkuRMwbsYbYBWlQ5MCYfZ4chfIN0ilIUQDfZr4voZxNnj2TsSLxGcnFKGo_oeu1aMmh_ZR3p_DiQgDYM1hCPXY8m2tGRBUmh12vY6qjfkLNh6q3RSyaQbvTE6WDQRRImj7q17oosIXoS5q_BtugM3jrpsB8GjD7VMH4OUfdEG-Nx9Z79otyNPl6To5i6i4kbJ3Qp_SR71Ok-4OHdfZB9fnf66eR9fv6hOTs5Os91yWqaS95qzgqTJgRtaUrGhUSU0GloW2E6iYxzzjpGW1EITqHiRV1RmTgqOKv5QfZ89Z38eDNjiGqw6W196gbHOShWAeVVUf4XpFIIRiuRwBf3gyWjBfBaLMVfrqjxYwhp7GryNi1oryio5Quof79Awp_dOafx6z4tyRkb_mqKWlJ-2ypfuR-2x_29nmrbfDymvOQ0qfJVZUPEn39U2n9XQnJZqstdoyrYNc3l9ot6y38DWJjQpw</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Hopper, John R.</creator><creator>Dahl-Jensen, Trine</creator><creator>Holbrook, W. Steven</creator><creator>Larsen, Hans Christian</creator><creator>Lizarralde, Dan</creator><creator>Korenaga, Jun</creator><creator>Kent, Graham M.</creator><creator>Kelemen, Peter B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200305</creationdate><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><author>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied geophysics</topic><topic>asymmetric spreading</topic><topic>continental breakup</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Greenland margin</topic><topic>Internal geophysics</topic><topic>mantle dynamics</topic><topic>Marine</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Tectonics. Structural geology. Plate tectonics</topic><topic>volcanic rifted margin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopper, John R.</creatorcontrib><creatorcontrib>Dahl-Jensen, Trine</creatorcontrib><creatorcontrib>Holbrook, W. Steven</creatorcontrib><creatorcontrib>Larsen, Hans Christian</creatorcontrib><creatorcontrib>Lizarralde, Dan</creatorcontrib><creatorcontrib>Korenaga, Jun</creatorcontrib><creatorcontrib>Kent, Graham M.</creatorcontrib><creatorcontrib>Kelemen, Peter B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopper, John R.</au><au>Dahl-Jensen, Trine</au><au>Holbrook, W. Steven</au><au>Larsen, Hans Christian</au><au>Lizarralde, Dan</au><au>Korenaga, Jun</au><au>Kent, Graham M.</au><au>Kelemen, Peter B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-05</date><risdate>2003</risdate><volume>108</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JB001996</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2003-05, Vol.108 (B5), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28013845
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Applied geophysics
asymmetric spreading
continental breakup
Earth sciences
Earth, ocean, space
Exact sciences and technology
Greenland margin
Internal geophysics
mantle dynamics
Marine
Solid-earth geophysics, tectonophysics, gravimetry
Tectonics. Structural geology. Plate tectonics
volcanic rifted margin
title Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20SE%20Greenland%20margin%20from%20seismic%20reflection%20and%20refraction%20data:%20Implications%20for%20nascent%20spreading%20center%20subsidence%20and%20asymmetric%20crustal%20accretion%20during%20North%20Atlantic%20opening&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Hopper,%20John%20R.&rft.date=2003-05&rft.volume=108&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JB001996&rft_dat=%3Cproquest_cross%3E28013845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521403969&rft_id=info:pmid/&rfr_iscdi=true