Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening
Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2003-05, Vol.108 (B5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B5 |
container_start_page | |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 108 |
creator | Hopper, John R. Dahl-Jensen, Trine Holbrook, W. Steven Larsen, Hans Christian Lizarralde, Dan Korenaga, Jun Kent, Graham M. Kelemen, Peter B. |
description | Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening. |
doi_str_mv | 10.1029/2002JB001996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28013845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28013845</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEEqvSGw_gC4gDgbGd2Am3tpTQVbVIFOjRMs6kNSROajuCfUDeC6epgFPxxZrR9_8znnGWPaXwigKrXzMAtj0GoHUtHmQbRkuRMwbsYbYBWlQ5MCYfZ4chfIN0ilIUQDfZr4voZxNnj2TsSLxGcnFKGo_oeu1aMmh_ZR3p_DiQgDYM1hCPXY8m2tGRBUmh12vY6qjfkLNh6q3RSyaQbvTE6WDQRRImj7q17oosIXoS5q_BtugM3jrpsB8GjD7VMH4OUfdEG-Nx9Z79otyNPl6To5i6i4kbJ3Qp_SR71Ok-4OHdfZB9fnf66eR9fv6hOTs5Os91yWqaS95qzgqTJgRtaUrGhUSU0GloW2E6iYxzzjpGW1EITqHiRV1RmTgqOKv5QfZ89Z38eDNjiGqw6W196gbHOShWAeVVUf4XpFIIRiuRwBf3gyWjBfBaLMVfrqjxYwhp7GryNi1oryio5Quof79Awp_dOafx6z4tyRkb_mqKWlJ-2ypfuR-2x_29nmrbfDymvOQ0qfJVZUPEn39U2n9XQnJZqstdoyrYNc3l9ot6y38DWJjQpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521403969</pqid></control><display><type>article</type><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</creator><creatorcontrib>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</creatorcontrib><description>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2002JB001996</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Applied geophysics ; asymmetric spreading ; continental breakup ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Greenland margin ; Internal geophysics ; mantle dynamics ; Marine ; Solid-earth geophysics, tectonophysics, gravimetry ; Tectonics. Structural geology. Plate tectonics ; volcanic rifted margin</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2003-05, Vol.108 (B5), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</citedby><cites>FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JB001996$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JB001996$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11516,27926,27927,45576,45577,46411,46470,46835,46894</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14971345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopper, John R.</creatorcontrib><creatorcontrib>Dahl-Jensen, Trine</creatorcontrib><creatorcontrib>Holbrook, W. Steven</creatorcontrib><creatorcontrib>Larsen, Hans Christian</creatorcontrib><creatorcontrib>Lizarralde, Dan</creatorcontrib><creatorcontrib>Korenaga, Jun</creatorcontrib><creatorcontrib>Kent, Graham M.</creatorcontrib><creatorcontrib>Kelemen, Peter B.</creatorcontrib><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</description><subject>Applied geophysics</subject><subject>asymmetric spreading</subject><subject>continental breakup</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Greenland margin</subject><subject>Internal geophysics</subject><subject>mantle dynamics</subject><subject>Marine</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Tectonics. Structural geology. Plate tectonics</subject><subject>volcanic rifted margin</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhiMEEqvSGw_gC4gDgbGd2Am3tpTQVbVIFOjRMs6kNSROajuCfUDeC6epgFPxxZrR9_8znnGWPaXwigKrXzMAtj0GoHUtHmQbRkuRMwbsYbYBWlQ5MCYfZ4chfIN0ilIUQDfZr4voZxNnj2TsSLxGcnFKGo_oeu1aMmh_ZR3p_DiQgDYM1hCPXY8m2tGRBUmh12vY6qjfkLNh6q3RSyaQbvTE6WDQRRImj7q17oosIXoS5q_BtugM3jrpsB8GjD7VMH4OUfdEG-Nx9Z79otyNPl6To5i6i4kbJ3Qp_SR71Ok-4OHdfZB9fnf66eR9fv6hOTs5Os91yWqaS95qzgqTJgRtaUrGhUSU0GloW2E6iYxzzjpGW1EITqHiRV1RmTgqOKv5QfZ89Z38eDNjiGqw6W196gbHOShWAeVVUf4XpFIIRiuRwBf3gyWjBfBaLMVfrqjxYwhp7GryNi1oryio5Quof79Awp_dOafx6z4tyRkb_mqKWlJ-2ypfuR-2x_29nmrbfDymvOQ0qfJVZUPEn39U2n9XQnJZqstdoyrYNc3l9ot6y38DWJjQpw</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Hopper, John R.</creator><creator>Dahl-Jensen, Trine</creator><creator>Holbrook, W. Steven</creator><creator>Larsen, Hans Christian</creator><creator>Lizarralde, Dan</creator><creator>Korenaga, Jun</creator><creator>Kent, Graham M.</creator><creator>Kelemen, Peter B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200305</creationdate><title>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</title><author>Hopper, John R. ; Dahl-Jensen, Trine ; Holbrook, W. Steven ; Larsen, Hans Christian ; Lizarralde, Dan ; Korenaga, Jun ; Kent, Graham M. ; Kelemen, Peter B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5291-73da324c9960d5c52367ee70fa0dd6cf7e23332f21d6463108349817236163293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied geophysics</topic><topic>asymmetric spreading</topic><topic>continental breakup</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Greenland margin</topic><topic>Internal geophysics</topic><topic>mantle dynamics</topic><topic>Marine</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Tectonics. Structural geology. Plate tectonics</topic><topic>volcanic rifted margin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopper, John R.</creatorcontrib><creatorcontrib>Dahl-Jensen, Trine</creatorcontrib><creatorcontrib>Holbrook, W. Steven</creatorcontrib><creatorcontrib>Larsen, Hans Christian</creatorcontrib><creatorcontrib>Lizarralde, Dan</creatorcontrib><creatorcontrib>Korenaga, Jun</creatorcontrib><creatorcontrib>Kent, Graham M.</creatorcontrib><creatorcontrib>Kelemen, Peter B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopper, John R.</au><au>Dahl-Jensen, Trine</au><au>Holbrook, W. Steven</au><au>Larsen, Hans Christian</au><au>Lizarralde, Dan</au><au>Korenaga, Jun</au><au>Kent, Graham M.</au><au>Kelemen, Peter B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-05</date><risdate>2003</risdate><volume>108</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near‐to‐average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland‐Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent‐ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JB001996</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2003-05, Vol.108 (B5), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_28013845 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Applied geophysics asymmetric spreading continental breakup Earth sciences Earth, ocean, space Exact sciences and technology Greenland margin Internal geophysics mantle dynamics Marine Solid-earth geophysics, tectonophysics, gravimetry Tectonics. Structural geology. Plate tectonics volcanic rifted margin |
title | Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20SE%20Greenland%20margin%20from%20seismic%20reflection%20and%20refraction%20data:%20Implications%20for%20nascent%20spreading%20center%20subsidence%20and%20asymmetric%20crustal%20accretion%20during%20North%20Atlantic%20opening&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Hopper,%20John%20R.&rft.date=2003-05&rft.volume=108&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JB001996&rft_dat=%3Cproquest_cross%3E28013845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521403969&rft_id=info:pmid/&rfr_iscdi=true |