High-frequency, nonlinear flow imaging of microbubble contrast agents

It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502
Hauptverfasser: Goertz, D.E., Needles, A., Burns, P.N., Foster, F.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 3
container_start_page 495
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 52
creator Goertz, D.E.
Needles, A.
Burns, P.N.
Foster, F.S.
description It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.
doi_str_mv 10.1109/TUFFC.2005.1417273
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28011728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1417273</ieee_id><sourcerecordid>67794773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1W_wEFGYTqxVnfy-8cZelaoeClPYdMmqxTZjM1mUH635t1BxY86CmHfN5L3vsS8gZhjQjm8-3ddrtZUwCxRo6KKvaMrFBQ0WojxHOyAq1FywDhjJyX8gCAnBv6kpyh0EKBMCtydd3vfrQxh59zSP7pU5PGNPQpuNzEYfzV9Hu369OuGWOz730eu7nrhtD4MU3Zlalxu5Cm8oq8iG4o4fVyXpC77dXt5rq9-f712-bLTes5x6lVHnX0hnUYlQYhOJdU8sCcipRJwZmAeO_R0aiZkFw4D8bxAOBNJxlDdkE-Hvs-5rF-uEx23xcfhsGlMM7FGlBGUo2yyg__lFIpw5Vi_4VUA9bd6grf_wUfxjmnOq7V0iBQRXlF9IjqqkrJIdrHXFeYnyyCPYRm_4RmD6HZJbRa9G7pPHf7cH8qWVKq4HIBrng3xOyS78vJSSmp0Qf39uj6EMLpennmN9P6pZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869102724</pqid></control><display><type>article</type><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><source>IEEE Electronic Library (IEL)</source><creator>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</creator><creatorcontrib>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</creatorcontrib><description>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2005.1417273</identifier><identifier>PMID: 15857059</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Animals ; Biological and medical sciences ; Computer Simulation ; Contrast agents ; Ear ; Ear - blood supply ; Ear - physiology ; Echocardiography - instrumentation ; Echocardiography - methods ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Feasibility ; Feasibility Studies ; Frequency ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging phantoms ; In vivo ; Instrumentation ; Instruments ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Investigative techniques, diagnostic techniques (general aspects) ; Load flow ; Medical sciences ; Microbubbles ; Microcirculation - diagnostic imaging ; Microcirculation - physiology ; Microorganisms ; Miscellaneous. Technology ; Models, Cardiovascular ; Nonlinear Dynamics ; Nonlinearity ; Physics ; Prototypes ; Rabbits ; Scattering ; Signal Processing, Computer-Assisted ; Surgical implants ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasonography, Doppler, Color - instrumentation ; Ultrasonography, Doppler, Color - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</citedby><cites>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1417273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1417273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16662989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15857059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goertz, D.E.</creatorcontrib><creatorcontrib>Needles, A.</creatorcontrib><creatorcontrib>Burns, P.N.</creatorcontrib><creatorcontrib>Foster, F.S.</creatorcontrib><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Contrast agents</subject><subject>Ear</subject><subject>Ear - blood supply</subject><subject>Ear - physiology</subject><subject>Echocardiography - instrumentation</subject><subject>Echocardiography - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Feasibility Studies</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging phantoms</subject><subject>In vivo</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Load flow</subject><subject>Medical sciences</subject><subject>Microbubbles</subject><subject>Microcirculation - diagnostic imaging</subject><subject>Microcirculation - physiology</subject><subject>Microorganisms</subject><subject>Miscellaneous. Technology</subject><subject>Models, Cardiovascular</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Rabbits</subject><subject>Scattering</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Surgical implants</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasonography, Doppler, Color - instrumentation</subject><subject>Ultrasonography, Doppler, Color - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1W_wEFGYTqxVnfy-8cZelaoeClPYdMmqxTZjM1mUH635t1BxY86CmHfN5L3vsS8gZhjQjm8-3ddrtZUwCxRo6KKvaMrFBQ0WojxHOyAq1FywDhjJyX8gCAnBv6kpyh0EKBMCtydd3vfrQxh59zSP7pU5PGNPQpuNzEYfzV9Hu369OuGWOz730eu7nrhtD4MU3Zlalxu5Cm8oq8iG4o4fVyXpC77dXt5rq9-f712-bLTes5x6lVHnX0hnUYlQYhOJdU8sCcipRJwZmAeO_R0aiZkFw4D8bxAOBNJxlDdkE-Hvs-5rF-uEx23xcfhsGlMM7FGlBGUo2yyg__lFIpw5Vi_4VUA9bd6grf_wUfxjmnOq7V0iBQRXlF9IjqqkrJIdrHXFeYnyyCPYRm_4RmD6HZJbRa9G7pPHf7cH8qWVKq4HIBrng3xOyS78vJSSmp0Qf39uj6EMLpennmN9P6pZs</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Goertz, D.E.</creator><creator>Needles, A.</creator><creator>Burns, P.N.</creator><creator>Foster, F.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><author>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Contrast agents</topic><topic>Ear</topic><topic>Ear - blood supply</topic><topic>Ear - physiology</topic><topic>Echocardiography - instrumentation</topic><topic>Echocardiography - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Feasibility Studies</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging phantoms</topic><topic>In vivo</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Load flow</topic><topic>Medical sciences</topic><topic>Microbubbles</topic><topic>Microcirculation - diagnostic imaging</topic><topic>Microcirculation - physiology</topic><topic>Microorganisms</topic><topic>Miscellaneous. Technology</topic><topic>Models, Cardiovascular</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Rabbits</topic><topic>Scattering</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Surgical implants</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasonography, Doppler, Color - instrumentation</topic><topic>Ultrasonography, Doppler, Color - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goertz, D.E.</creatorcontrib><creatorcontrib>Needles, A.</creatorcontrib><creatorcontrib>Burns, P.N.</creatorcontrib><creatorcontrib>Foster, F.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goertz, D.E.</au><au>Needles, A.</au><au>Burns, P.N.</au><au>Foster, F.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-frequency, nonlinear flow imaging of microbubble contrast agents</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>52</volume><issue>3</issue><spage>495</spage><epage>502</epage><pages>495-502</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15857059</pmid><doi>10.1109/TUFFC.2005.1417273</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_28011728
source IEEE Electronic Library (IEL)
subjects Acoustics
Animals
Biological and medical sciences
Computer Simulation
Contrast agents
Ear
Ear - blood supply
Ear - physiology
Echocardiography - instrumentation
Echocardiography - methods
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Feasibility
Feasibility Studies
Frequency
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Image Enhancement - instrumentation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging
Imaging phantoms
In vivo
Instrumentation
Instruments
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Investigative techniques, diagnostic techniques (general aspects)
Load flow
Medical sciences
Microbubbles
Microcirculation - diagnostic imaging
Microcirculation - physiology
Microorganisms
Miscellaneous. Technology
Models, Cardiovascular
Nonlinear Dynamics
Nonlinearity
Physics
Prototypes
Rabbits
Scattering
Signal Processing, Computer-Assisted
Surgical implants
Transducers
Ultrasonic imaging
Ultrasonic investigative techniques
Ultrasonics, quantum acoustics, and physical effects of sound
Ultrasonography, Doppler, Color - instrumentation
Ultrasonography, Doppler, Color - methods
title High-frequency, nonlinear flow imaging of microbubble contrast agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-frequency,%20nonlinear%20flow%20imaging%20of%20microbubble%20contrast%20agents&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Goertz,%20D.E.&rft.date=2005-03-01&rft.volume=52&rft.issue=3&rft.spage=495&rft.epage=502&rft.pages=495-502&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2005.1417273&rft_dat=%3Cproquest_RIE%3E67794773%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869102724&rft_id=info:pmid/15857059&rft_ieee_id=1417273&rfr_iscdi=true