High-frequency, nonlinear flow imaging of microbubble contrast agents
It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imagin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 52 |
creator | Goertz, D.E. Needles, A. Burns, P.N. Foster, F.S. |
description | It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles. |
doi_str_mv | 10.1109/TUFFC.2005.1417273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28011728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1417273</ieee_id><sourcerecordid>67794773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1W_wEFGYTqxVnfy-8cZelaoeClPYdMmqxTZjM1mUH635t1BxY86CmHfN5L3vsS8gZhjQjm8-3ddrtZUwCxRo6KKvaMrFBQ0WojxHOyAq1FywDhjJyX8gCAnBv6kpyh0EKBMCtydd3vfrQxh59zSP7pU5PGNPQpuNzEYfzV9Hu369OuGWOz730eu7nrhtD4MU3Zlalxu5Cm8oq8iG4o4fVyXpC77dXt5rq9-f712-bLTes5x6lVHnX0hnUYlQYhOJdU8sCcipRJwZmAeO_R0aiZkFw4D8bxAOBNJxlDdkE-Hvs-5rF-uEx23xcfhsGlMM7FGlBGUo2yyg__lFIpw5Vi_4VUA9bd6grf_wUfxjmnOq7V0iBQRXlF9IjqqkrJIdrHXFeYnyyCPYRm_4RmD6HZJbRa9G7pPHf7cH8qWVKq4HIBrng3xOyS78vJSSmp0Qf39uj6EMLpennmN9P6pZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869102724</pqid></control><display><type>article</type><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><source>IEEE Electronic Library (IEL)</source><creator>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</creator><creatorcontrib>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</creatorcontrib><description>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2005.1417273</identifier><identifier>PMID: 15857059</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Animals ; Biological and medical sciences ; Computer Simulation ; Contrast agents ; Ear ; Ear - blood supply ; Ear - physiology ; Echocardiography - instrumentation ; Echocardiography - methods ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Feasibility ; Feasibility Studies ; Frequency ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging phantoms ; In vivo ; Instrumentation ; Instruments ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Investigative techniques, diagnostic techniques (general aspects) ; Load flow ; Medical sciences ; Microbubbles ; Microcirculation - diagnostic imaging ; Microcirculation - physiology ; Microorganisms ; Miscellaneous. Technology ; Models, Cardiovascular ; Nonlinear Dynamics ; Nonlinearity ; Physics ; Prototypes ; Rabbits ; Scattering ; Signal Processing, Computer-Assisted ; Surgical implants ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasonography, Doppler, Color - instrumentation ; Ultrasonography, Doppler, Color - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</citedby><cites>FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1417273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1417273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16662989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15857059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goertz, D.E.</creatorcontrib><creatorcontrib>Needles, A.</creatorcontrib><creatorcontrib>Burns, P.N.</creatorcontrib><creatorcontrib>Foster, F.S.</creatorcontrib><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Contrast agents</subject><subject>Ear</subject><subject>Ear - blood supply</subject><subject>Ear - physiology</subject><subject>Echocardiography - instrumentation</subject><subject>Echocardiography - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Feasibility Studies</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging phantoms</subject><subject>In vivo</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Load flow</subject><subject>Medical sciences</subject><subject>Microbubbles</subject><subject>Microcirculation - diagnostic imaging</subject><subject>Microcirculation - physiology</subject><subject>Microorganisms</subject><subject>Miscellaneous. Technology</subject><subject>Models, Cardiovascular</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Rabbits</subject><subject>Scattering</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Surgical implants</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasonography, Doppler, Color - instrumentation</subject><subject>Ultrasonography, Doppler, Color - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1W_wEFGYTqxVnfy-8cZelaoeClPYdMmqxTZjM1mUH635t1BxY86CmHfN5L3vsS8gZhjQjm8-3ddrtZUwCxRo6KKvaMrFBQ0WojxHOyAq1FywDhjJyX8gCAnBv6kpyh0EKBMCtydd3vfrQxh59zSP7pU5PGNPQpuNzEYfzV9Hu369OuGWOz730eu7nrhtD4MU3Zlalxu5Cm8oq8iG4o4fVyXpC77dXt5rq9-f712-bLTes5x6lVHnX0hnUYlQYhOJdU8sCcipRJwZmAeO_R0aiZkFw4D8bxAOBNJxlDdkE-Hvs-5rF-uEx23xcfhsGlMM7FGlBGUo2yyg__lFIpw5Vi_4VUA9bd6grf_wUfxjmnOq7V0iBQRXlF9IjqqkrJIdrHXFeYnyyCPYRm_4RmD6HZJbRa9G7pPHf7cH8qWVKq4HIBrng3xOyS78vJSSmp0Qf39uj6EMLpennmN9P6pZs</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Goertz, D.E.</creator><creator>Needles, A.</creator><creator>Burns, P.N.</creator><creator>Foster, F.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>High-frequency, nonlinear flow imaging of microbubble contrast agents</title><author>Goertz, D.E. ; Needles, A. ; Burns, P.N. ; Foster, F.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7c18fc93b1f78055446264e3a7f23654350fdc1a2f835645ac09a4e00c9b63313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Contrast agents</topic><topic>Ear</topic><topic>Ear - blood supply</topic><topic>Ear - physiology</topic><topic>Echocardiography - instrumentation</topic><topic>Echocardiography - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Feasibility Studies</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging phantoms</topic><topic>In vivo</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Load flow</topic><topic>Medical sciences</topic><topic>Microbubbles</topic><topic>Microcirculation - diagnostic imaging</topic><topic>Microcirculation - physiology</topic><topic>Microorganisms</topic><topic>Miscellaneous. Technology</topic><topic>Models, Cardiovascular</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Rabbits</topic><topic>Scattering</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Surgical implants</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasonography, Doppler, Color - instrumentation</topic><topic>Ultrasonography, Doppler, Color - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goertz, D.E.</creatorcontrib><creatorcontrib>Needles, A.</creatorcontrib><creatorcontrib>Burns, P.N.</creatorcontrib><creatorcontrib>Foster, F.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goertz, D.E.</au><au>Needles, A.</au><au>Burns, P.N.</au><au>Foster, F.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-frequency, nonlinear flow imaging of microbubble contrast agents</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>52</volume><issue>3</issue><spage>495</spage><epage>502</epage><pages>495-502</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>It has been shown that nonlinear scattering can be stimulated from microbubble contrast agents at high-transmit frequencies (14-32 MHz). This work was extended to demonstrate the feasibility of nonlinear contrast imaging through modifications of existing ultrasound biomicroscopy linear B-scan imaging instrumentation. In this study, we describe the development and evaluation of prototype coherent flow imaging instrumentation for nonlinear microbubble imaging using transmit frequencies from 10 to 50 MHz. Phantom validation experiments were conducted to demonstrate color and power flow imaging using nonlinear 10 MHz (subharmonic) scattering induced by a 20-MHz transmit frequency. In vivo flow imaging of a rabbit ear microvessel was successfully performed. This work indicates the feasibility of performing flow imaging at high frequencies using nonlinear scattering from microbubbles.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15857059</pmid><doi>10.1109/TUFFC.2005.1417273</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-03, Vol.52 (3), p.495-502 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_28011728 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Animals Biological and medical sciences Computer Simulation Contrast agents Ear Ear - blood supply Ear - physiology Echocardiography - instrumentation Echocardiography - methods Equipment Design Equipment Failure Analysis Exact sciences and technology Feasibility Feasibility Studies Frequency Fundamental areas of phenomenology (including applications) General equipment and techniques Image Enhancement - instrumentation Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging Imaging phantoms In vivo Instrumentation Instruments Instruments, apparatus, components and techniques common to several branches of physics and astronomy Investigative techniques, diagnostic techniques (general aspects) Load flow Medical sciences Microbubbles Microcirculation - diagnostic imaging Microcirculation - physiology Microorganisms Miscellaneous. Technology Models, Cardiovascular Nonlinear Dynamics Nonlinearity Physics Prototypes Rabbits Scattering Signal Processing, Computer-Assisted Surgical implants Transducers Ultrasonic imaging Ultrasonic investigative techniques Ultrasonics, quantum acoustics, and physical effects of sound Ultrasonography, Doppler, Color - instrumentation Ultrasonography, Doppler, Color - methods |
title | High-frequency, nonlinear flow imaging of microbubble contrast agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-frequency,%20nonlinear%20flow%20imaging%20of%20microbubble%20contrast%20agents&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Goertz,%20D.E.&rft.date=2005-03-01&rft.volume=52&rft.issue=3&rft.spage=495&rft.epage=502&rft.pages=495-502&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2005.1417273&rft_dat=%3Cproquest_RIE%3E67794773%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869102724&rft_id=info:pmid/15857059&rft_ieee_id=1417273&rfr_iscdi=true |