Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media

Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we success...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-05, Vol.62 (20), p.e202218924-n/a
Hauptverfasser: Zhang, Yi, Wang, Mengwen, Zhu, Wenxiang, Fang, Miaomiao, Ma, Mengjie, Liao, Fan, Yang, Hao, Cheng, Tao, Pao, Chih‐Wen, Chang, Yu‐Chung, Hu, Zhiwei, Shao, Qi, Shao, Mingwang, Kang, Zhenhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e202218924
container_title Angewandte Chemie International Edition
container_volume 62
creator Zhang, Yi
Wang, Mengwen
Zhu, Wenxiang
Fang, Miaomiao
Ma, Mengjie
Liao, Fan
Yang, Hao
Cheng, Tao
Pao, Chih‐Wen
Chang, Yu‐Chung
Hu, Zhiwei
Shao, Qi
Shao, Mingwang
Kang, Zhenhui
description Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations. A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.
doi_str_mv 10.1002/anie.202218924
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2800622733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808471046</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-20a8b87612473a350a97eb98e1e70450cfdf4d7999f9294e68d93d66370009333</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_BFFKzVq-eAFy9b82oex1KqFfoQ1POS3Z1tI2tSk9Taux_c9UEPnmYGfszA_LPskuABwZjeGGdhQDGlRGnKj7IeGVKSMynZcddzxnKphuQ0O4vxpfNKYdHLPueQTEymbAFN4cOsvDMtelibCOjRLSlaGOeDLUvvItrZtEajKtl3QJN61QmbIKLGBzRpGltZcAlN93XwK3DoAYL_sHVHW6hS8HHv0hqijcg6tIBtCt2lOdTWnGcnjWkjXPzVfvZ8O3kaT_PZ8u5-PJrlGyoEzyk2qlRSEMolM2yIjZZQagUEJOZDXDV1w2uptW401RyEqjWrhWASY6wZY_3s-nfvJvi3LcRUvNpYQdsaB34bC6owFpTKH3r1j774beh-86MUlwRz0Sn9q3a2hX2xCfbVhH1BcPGdSPGdSHFIpBgt7ieHiX0BjC-BVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808471046</pqid></control><display><type>article</type><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</creator><creatorcontrib>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</creatorcontrib><description>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations. A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218924</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthraquinone ; Anthraquinones ; Catalysts ; Chemical reduction ; Crystal structure ; Density functional theory ; Electrochemistry ; Hexagonal phase ; Hydrogen peroxide ; Hydrogen Peroxide (H2O2) ; Metastable Compounds ; Nanoribbons ; Oxygen reduction reactions ; SnO2 ; Sodium sulfate ; Tin dioxide ; Two-Electron Oxygen Reduction Reaction (2 e− ORR)</subject><ispartof>Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202218924-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4220-463X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202218924$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202218924$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Mengwen</creatorcontrib><creatorcontrib>Zhu, Wenxiang</creatorcontrib><creatorcontrib>Fang, Miaomiao</creatorcontrib><creatorcontrib>Ma, Mengjie</creatorcontrib><creatorcontrib>Liao, Fan</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Shao, Mingwang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><title>Angewandte Chemie International Edition</title><description>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations. A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</description><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Hexagonal phase</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide (H2O2)</subject><subject>Metastable Compounds</subject><subject>Nanoribbons</subject><subject>Oxygen reduction reactions</subject><subject>SnO2</subject><subject>Sodium sulfate</subject><subject>Tin dioxide</subject><subject>Two-Electron Oxygen Reduction Reaction (2 e− ORR)</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_BFFKzVq-eAFy9b82oex1KqFfoQ1POS3Z1tI2tSk9Taux_c9UEPnmYGfszA_LPskuABwZjeGGdhQDGlRGnKj7IeGVKSMynZcddzxnKphuQ0O4vxpfNKYdHLPueQTEymbAFN4cOsvDMtelibCOjRLSlaGOeDLUvvItrZtEajKtl3QJN61QmbIKLGBzRpGltZcAlN93XwK3DoAYL_sHVHW6hS8HHv0hqijcg6tIBtCt2lOdTWnGcnjWkjXPzVfvZ8O3kaT_PZ8u5-PJrlGyoEzyk2qlRSEMolM2yIjZZQagUEJOZDXDV1w2uptW401RyEqjWrhWASY6wZY_3s-nfvJvi3LcRUvNpYQdsaB34bC6owFpTKH3r1j774beh-86MUlwRz0Sn9q3a2hX2xCfbVhH1BcPGdSPGdSHFIpBgt7ieHiX0BjC-BVA</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Zhang, Yi</creator><creator>Wang, Mengwen</creator><creator>Zhu, Wenxiang</creator><creator>Fang, Miaomiao</creator><creator>Ma, Mengjie</creator><creator>Liao, Fan</creator><creator>Yang, Hao</creator><creator>Cheng, Tao</creator><creator>Pao, Chih‐Wen</creator><creator>Chang, Yu‐Chung</creator><creator>Hu, Zhiwei</creator><creator>Shao, Qi</creator><creator>Shao, Mingwang</creator><creator>Kang, Zhenhui</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4220-463X</orcidid></search><sort><creationdate>20230508</creationdate><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><author>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-20a8b87612473a350a97eb98e1e70450cfdf4d7999f9294e68d93d66370009333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Hexagonal phase</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide (H2O2)</topic><topic>Metastable Compounds</topic><topic>Nanoribbons</topic><topic>Oxygen reduction reactions</topic><topic>SnO2</topic><topic>Sodium sulfate</topic><topic>Tin dioxide</topic><topic>Two-Electron Oxygen Reduction Reaction (2 e− ORR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Mengwen</creatorcontrib><creatorcontrib>Zhu, Wenxiang</creatorcontrib><creatorcontrib>Fang, Miaomiao</creatorcontrib><creatorcontrib>Ma, Mengjie</creatorcontrib><creatorcontrib>Liao, Fan</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Shao, Mingwang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Wang, Mengwen</au><au>Zhu, Wenxiang</au><au>Fang, Miaomiao</au><au>Ma, Mengjie</au><au>Liao, Fan</au><au>Yang, Hao</au><au>Cheng, Tao</au><au>Pao, Chih‐Wen</au><au>Chang, Yu‐Chung</au><au>Hu, Zhiwei</au><au>Shao, Qi</au><au>Shao, Mingwang</au><au>Kang, Zhenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-05-08</date><risdate>2023</risdate><volume>62</volume><issue>20</issue><spage>e202218924</spage><epage>n/a</epage><pages>e202218924-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations. A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202218924</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4220-463X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202218924-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2800622733
source Wiley Online Library Journals Frontfile Complete
subjects Anthraquinone
Anthraquinones
Catalysts
Chemical reduction
Crystal structure
Density functional theory
Electrochemistry
Hexagonal phase
Hydrogen peroxide
Hydrogen Peroxide (H2O2)
Metastable Compounds
Nanoribbons
Oxygen reduction reactions
SnO2
Sodium sulfate
Tin dioxide
Two-Electron Oxygen Reduction Reaction (2 e− ORR)
title Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastable%20Hexagonal%20Phase%20SnO2%20Nanoribbons%20with%20Active%20Edge%20Sites%20for%20Efficient%20Hydrogen%20Peroxide%20Electrosynthesis%20in%20Neutral%20Media&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Yi&rft.date=2023-05-08&rft.volume=62&rft.issue=20&rft.spage=e202218924&rft.epage=n/a&rft.pages=e202218924-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218924&rft_dat=%3Cproquest_wiley%3E2808471046%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808471046&rft_id=info:pmid/&rfr_iscdi=true