Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media
Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we success...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-05, Vol.62 (20), p.e202218924-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | e202218924 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Zhang, Yi Wang, Mengwen Zhu, Wenxiang Fang, Miaomiao Ma, Mengjie Liao, Fan Yang, Hao Cheng, Tao Pao, Chih‐Wen Chang, Yu‐Chung Hu, Zhiwei Shao, Qi Shao, Mingwang Kang, Zhenhui |
description | Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations.
A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity. |
doi_str_mv | 10.1002/anie.202218924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2800622733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808471046</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-20a8b87612473a350a97eb98e1e70450cfdf4d7999f9294e68d93d66370009333</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_BFFKzVq-eAFy9b82oex1KqFfoQ1POS3Z1tI2tSk9Taux_c9UEPnmYGfszA_LPskuABwZjeGGdhQDGlRGnKj7IeGVKSMynZcddzxnKphuQ0O4vxpfNKYdHLPueQTEymbAFN4cOsvDMtelibCOjRLSlaGOeDLUvvItrZtEajKtl3QJN61QmbIKLGBzRpGltZcAlN93XwK3DoAYL_sHVHW6hS8HHv0hqijcg6tIBtCt2lOdTWnGcnjWkjXPzVfvZ8O3kaT_PZ8u5-PJrlGyoEzyk2qlRSEMolM2yIjZZQagUEJOZDXDV1w2uptW401RyEqjWrhWASY6wZY_3s-nfvJvi3LcRUvNpYQdsaB34bC6owFpTKH3r1j774beh-86MUlwRz0Sn9q3a2hX2xCfbVhH1BcPGdSPGdSHFIpBgt7ieHiX0BjC-BVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808471046</pqid></control><display><type>article</type><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</creator><creatorcontrib>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</creatorcontrib><description>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations.
A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218924</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthraquinone ; Anthraquinones ; Catalysts ; Chemical reduction ; Crystal structure ; Density functional theory ; Electrochemistry ; Hexagonal phase ; Hydrogen peroxide ; Hydrogen Peroxide (H2O2) ; Metastable Compounds ; Nanoribbons ; Oxygen reduction reactions ; SnO2 ; Sodium sulfate ; Tin dioxide ; Two-Electron Oxygen Reduction Reaction (2 e− ORR)</subject><ispartof>Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202218924-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4220-463X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202218924$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202218924$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Mengwen</creatorcontrib><creatorcontrib>Zhu, Wenxiang</creatorcontrib><creatorcontrib>Fang, Miaomiao</creatorcontrib><creatorcontrib>Ma, Mengjie</creatorcontrib><creatorcontrib>Liao, Fan</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Shao, Mingwang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><title>Angewandte Chemie International Edition</title><description>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations.
A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</description><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Hexagonal phase</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide (H2O2)</subject><subject>Metastable Compounds</subject><subject>Nanoribbons</subject><subject>Oxygen reduction reactions</subject><subject>SnO2</subject><subject>Sodium sulfate</subject><subject>Tin dioxide</subject><subject>Two-Electron Oxygen Reduction Reaction (2 e− ORR)</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_BFFKzVq-eAFy9b82oex1KqFfoQ1POS3Z1tI2tSk9Taux_c9UEPnmYGfszA_LPskuABwZjeGGdhQDGlRGnKj7IeGVKSMynZcddzxnKphuQ0O4vxpfNKYdHLPueQTEymbAFN4cOsvDMtelibCOjRLSlaGOeDLUvvItrZtEajKtl3QJN61QmbIKLGBzRpGltZcAlN93XwK3DoAYL_sHVHW6hS8HHv0hqijcg6tIBtCt2lOdTWnGcnjWkjXPzVfvZ8O3kaT_PZ8u5-PJrlGyoEzyk2qlRSEMolM2yIjZZQagUEJOZDXDV1w2uptW401RyEqjWrhWASY6wZY_3s-nfvJvi3LcRUvNpYQdsaB34bC6owFpTKH3r1j774beh-86MUlwRz0Sn9q3a2hX2xCfbVhH1BcPGdSPGdSHFIpBgt7ieHiX0BjC-BVA</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Zhang, Yi</creator><creator>Wang, Mengwen</creator><creator>Zhu, Wenxiang</creator><creator>Fang, Miaomiao</creator><creator>Ma, Mengjie</creator><creator>Liao, Fan</creator><creator>Yang, Hao</creator><creator>Cheng, Tao</creator><creator>Pao, Chih‐Wen</creator><creator>Chang, Yu‐Chung</creator><creator>Hu, Zhiwei</creator><creator>Shao, Qi</creator><creator>Shao, Mingwang</creator><creator>Kang, Zhenhui</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4220-463X</orcidid></search><sort><creationdate>20230508</creationdate><title>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</title><author>Zhang, Yi ; Wang, Mengwen ; Zhu, Wenxiang ; Fang, Miaomiao ; Ma, Mengjie ; Liao, Fan ; Yang, Hao ; Cheng, Tao ; Pao, Chih‐Wen ; Chang, Yu‐Chung ; Hu, Zhiwei ; Shao, Qi ; Shao, Mingwang ; Kang, Zhenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-20a8b87612473a350a97eb98e1e70450cfdf4d7999f9294e68d93d66370009333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Hexagonal phase</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide (H2O2)</topic><topic>Metastable Compounds</topic><topic>Nanoribbons</topic><topic>Oxygen reduction reactions</topic><topic>SnO2</topic><topic>Sodium sulfate</topic><topic>Tin dioxide</topic><topic>Two-Electron Oxygen Reduction Reaction (2 e− ORR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Mengwen</creatorcontrib><creatorcontrib>Zhu, Wenxiang</creatorcontrib><creatorcontrib>Fang, Miaomiao</creatorcontrib><creatorcontrib>Ma, Mengjie</creatorcontrib><creatorcontrib>Liao, Fan</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Chang, Yu‐Chung</creatorcontrib><creatorcontrib>Hu, Zhiwei</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Shao, Mingwang</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Wang, Mengwen</au><au>Zhu, Wenxiang</au><au>Fang, Miaomiao</au><au>Ma, Mengjie</au><au>Liao, Fan</au><au>Yang, Hao</au><au>Cheng, Tao</au><au>Pao, Chih‐Wen</au><au>Chang, Yu‐Chung</au><au>Hu, Zhiwei</au><au>Shao, Qi</au><au>Shao, Mingwang</au><au>Kang, Zhenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-05-08</date><risdate>2023</risdate><volume>62</volume><issue>20</issue><spage>e202218924</spage><epage>n/a</epage><pages>e202218924-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical two‐electron oxygen reduction reaction (2 e− ORR) to produce hydrogen peroxide (H2O2) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e− ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave‐assisted mechanochemical‐thermal approach to synthesize hexagonal phase SnO2 (h‐SnO2) nanoribbons with largely exposed edge structures. In 0.1 M Na2SO4 electrolyte, the h‐SnO2 catalysts achieve the excellent H2O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g−1 h−1. The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2O2, which is confirmed by density functional theory calculations.
A new hexagonal phase SnO2 nanoribbon with abundant edge‐active sites has been successfully synthesized by microwave‐assisted mechanochemical‐thermal method. Due to its special structure and morphology, the h‐SnO2 catalysts exhibit near 100 % H2O2 selectivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202218924</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4220-463X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202218924-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2800622733 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anthraquinone Anthraquinones Catalysts Chemical reduction Crystal structure Density functional theory Electrochemistry Hexagonal phase Hydrogen peroxide Hydrogen Peroxide (H2O2) Metastable Compounds Nanoribbons Oxygen reduction reactions SnO2 Sodium sulfate Tin dioxide Two-Electron Oxygen Reduction Reaction (2 e− ORR) |
title | Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastable%20Hexagonal%20Phase%20SnO2%20Nanoribbons%20with%20Active%20Edge%20Sites%20for%20Efficient%20Hydrogen%20Peroxide%20Electrosynthesis%20in%20Neutral%20Media&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Yi&rft.date=2023-05-08&rft.volume=62&rft.issue=20&rft.spage=e202218924&rft.epage=n/a&rft.pages=e202218924-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218924&rft_dat=%3Cproquest_wiley%3E2808471046%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808471046&rft_id=info:pmid/&rfr_iscdi=true |