Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback

Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-04, Vol.15 (14), p.18362-18371
Hauptverfasser: Jayoti, Divya, Peeketi, Akhil Reddy, Kumbhar, Pramod Yallappa, Swaminathan, Narasimhan, Annabattula, Ratna Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18371
container_issue 14
container_start_page 18362
container_title ACS applied materials & interfaces
container_volume 15
creator Jayoti, Divya
Peeketi, Akhil Reddy
Kumbhar, Pramod Yallappa
Swaminathan, Narasimhan
Annabattula, Ratna Kumar
description Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.
doi_str_mv 10.1021/acsami.3c02472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2800620112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040358173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0EoqWwMiKPCCnFzzxGFNGCVKkMZSVybKe4JHFrJ0P-PUYp3ZCY7h3O913dA8AtRnOMCH4U0ovGzKlEhCXkDExxxliUEk7OTztjE3Dl_Q6hmBLEL8GExlnCGeJT8LHUttGdG2Bu287ZutYKrr00dS06Y1sPTQtX5tAbBXM3-E7U8M3WQ6MdXJi68XDjzHarXYiVA9x8atcEZKG1KoX8ugYXlai9vjnOGXhfPG_yl2i1Xr7mT6tI0Jh2EaaUCxmTDBOGcCkpVbyikpKUpwgJzNMEq0xkigkkyzi8UZZKqzRhVZnQhNIZuB97984eeu27ojFe6vBEq23vC4oYojzF_0BJuBgThDEJ6HxEpbPeO10Ve2ca4YYCo-JHfzHqL476Q-Du2N2XjVYn_Nd3AB5GIASLne1dG6z81fYNSFaOvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800620112</pqid></control><display><type>article</type><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><source>ACS Publications</source><creator>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</creator><creatorcontrib>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</creatorcontrib><description>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02472</identifier><identifier>PMID: 36975405</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials ; finite element analysis ; geometry ; gravity ; heat transfer ; liquid crystals ; polymers ; temperature ; torque</subject><ispartof>ACS applied materials &amp; interfaces, 2023-04, Vol.15 (14), p.18362-18371</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</citedby><cites>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</cites><orcidid>0000-0001-7681-0470 ; 0000-0002-9955-7129 ; 0000-0001-8572-3766 ; 0000-0002-9492-8592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c02472$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c02472$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36975405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayoti, Divya</creatorcontrib><creatorcontrib>Peeketi, Akhil Reddy</creatorcontrib><creatorcontrib>Kumbhar, Pramod Yallappa</creatorcontrib><creatorcontrib>Swaminathan, Narasimhan</creatorcontrib><creatorcontrib>Annabattula, Ratna Kumar</creatorcontrib><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>finite element analysis</subject><subject>geometry</subject><subject>gravity</subject><subject>heat transfer</subject><subject>liquid crystals</subject><subject>polymers</subject><subject>temperature</subject><subject>torque</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAURi0EoqWwMiKPCCnFzzxGFNGCVKkMZSVybKe4JHFrJ0P-PUYp3ZCY7h3O913dA8AtRnOMCH4U0ovGzKlEhCXkDExxxliUEk7OTztjE3Dl_Q6hmBLEL8GExlnCGeJT8LHUttGdG2Bu287ZutYKrr00dS06Y1sPTQtX5tAbBXM3-E7U8M3WQ6MdXJi68XDjzHarXYiVA9x8atcEZKG1KoX8ugYXlai9vjnOGXhfPG_yl2i1Xr7mT6tI0Jh2EaaUCxmTDBOGcCkpVbyikpKUpwgJzNMEq0xkigkkyzi8UZZKqzRhVZnQhNIZuB97984eeu27ojFe6vBEq23vC4oYojzF_0BJuBgThDEJ6HxEpbPeO10Ve2ca4YYCo-JHfzHqL476Q-Du2N2XjVYn_Nd3AB5GIASLne1dG6z81fYNSFaOvA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Jayoti, Divya</creator><creator>Peeketi, Akhil Reddy</creator><creator>Kumbhar, Pramod Yallappa</creator><creator>Swaminathan, Narasimhan</creator><creator>Annabattula, Ratna Kumar</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7681-0470</orcidid><orcidid>https://orcid.org/0000-0002-9955-7129</orcidid><orcidid>https://orcid.org/0000-0001-8572-3766</orcidid><orcidid>https://orcid.org/0000-0002-9492-8592</orcidid></search><sort><creationdate>20230412</creationdate><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><author>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>finite element analysis</topic><topic>geometry</topic><topic>gravity</topic><topic>heat transfer</topic><topic>liquid crystals</topic><topic>polymers</topic><topic>temperature</topic><topic>torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayoti, Divya</creatorcontrib><creatorcontrib>Peeketi, Akhil Reddy</creatorcontrib><creatorcontrib>Kumbhar, Pramod Yallappa</creatorcontrib><creatorcontrib>Swaminathan, Narasimhan</creatorcontrib><creatorcontrib>Annabattula, Ratna Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayoti, Divya</au><au>Peeketi, Akhil Reddy</au><au>Kumbhar, Pramod Yallappa</au><au>Swaminathan, Narasimhan</au><au>Annabattula, Ratna Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-04-12</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>18362</spage><epage>18371</epage><pages>18362-18371</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36975405</pmid><doi>10.1021/acsami.3c02472</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7681-0470</orcidid><orcidid>https://orcid.org/0000-0002-9955-7129</orcidid><orcidid>https://orcid.org/0000-0001-8572-3766</orcidid><orcidid>https://orcid.org/0000-0002-9492-8592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-04, Vol.15 (14), p.18362-18371
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2800620112
source ACS Publications
subjects Applications of Polymer, Composite, and Coating Materials
finite element analysis
geometry
gravity
heat transfer
liquid crystals
polymers
temperature
torque
title Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20Controlled%20Oscillations%20in%20Liquid%20Crystal%20Polymer%20Films%20Triggered%20by%20Thermal%20Feedback&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jayoti,%20Divya&rft.date=2023-04-12&rft.volume=15&rft.issue=14&rft.spage=18362&rft.epage=18371&rft.pages=18362-18371&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02472&rft_dat=%3Cproquest_cross%3E3040358173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800620112&rft_id=info:pmid/36975405&rfr_iscdi=true