Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback
Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the o...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-04, Vol.15 (14), p.18362-18371 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18371 |
---|---|
container_issue | 14 |
container_start_page | 18362 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Jayoti, Divya Peeketi, Akhil Reddy Kumbhar, Pramod Yallappa Swaminathan, Narasimhan Annabattula, Ratna Kumar |
description | Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films. |
doi_str_mv | 10.1021/acsami.3c02472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2800620112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040358173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0EoqWwMiKPCCnFzzxGFNGCVKkMZSVybKe4JHFrJ0P-PUYp3ZCY7h3O913dA8AtRnOMCH4U0ovGzKlEhCXkDExxxliUEk7OTztjE3Dl_Q6hmBLEL8GExlnCGeJT8LHUttGdG2Bu287ZutYKrr00dS06Y1sPTQtX5tAbBXM3-E7U8M3WQ6MdXJi68XDjzHarXYiVA9x8atcEZKG1KoX8ugYXlai9vjnOGXhfPG_yl2i1Xr7mT6tI0Jh2EaaUCxmTDBOGcCkpVbyikpKUpwgJzNMEq0xkigkkyzi8UZZKqzRhVZnQhNIZuB97984eeu27ojFe6vBEq23vC4oYojzF_0BJuBgThDEJ6HxEpbPeO10Ve2ca4YYCo-JHfzHqL476Q-Du2N2XjVYn_Nd3AB5GIASLne1dG6z81fYNSFaOvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800620112</pqid></control><display><type>article</type><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><source>ACS Publications</source><creator>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</creator><creatorcontrib>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</creatorcontrib><description>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02472</identifier><identifier>PMID: 36975405</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials ; finite element analysis ; geometry ; gravity ; heat transfer ; liquid crystals ; polymers ; temperature ; torque</subject><ispartof>ACS applied materials & interfaces, 2023-04, Vol.15 (14), p.18362-18371</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</citedby><cites>FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</cites><orcidid>0000-0001-7681-0470 ; 0000-0002-9955-7129 ; 0000-0001-8572-3766 ; 0000-0002-9492-8592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c02472$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c02472$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36975405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayoti, Divya</creatorcontrib><creatorcontrib>Peeketi, Akhil Reddy</creatorcontrib><creatorcontrib>Kumbhar, Pramod Yallappa</creatorcontrib><creatorcontrib>Swaminathan, Narasimhan</creatorcontrib><creatorcontrib>Annabattula, Ratna Kumar</creatorcontrib><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>finite element analysis</subject><subject>geometry</subject><subject>gravity</subject><subject>heat transfer</subject><subject>liquid crystals</subject><subject>polymers</subject><subject>temperature</subject><subject>torque</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAURi0EoqWwMiKPCCnFzzxGFNGCVKkMZSVybKe4JHFrJ0P-PUYp3ZCY7h3O913dA8AtRnOMCH4U0ovGzKlEhCXkDExxxliUEk7OTztjE3Dl_Q6hmBLEL8GExlnCGeJT8LHUttGdG2Bu287ZutYKrr00dS06Y1sPTQtX5tAbBXM3-E7U8M3WQ6MdXJi68XDjzHarXYiVA9x8atcEZKG1KoX8ugYXlai9vjnOGXhfPG_yl2i1Xr7mT6tI0Jh2EaaUCxmTDBOGcCkpVbyikpKUpwgJzNMEq0xkigkkyzi8UZZKqzRhVZnQhNIZuB97984eeu27ojFe6vBEq23vC4oYojzF_0BJuBgThDEJ6HxEpbPeO10Ve2ca4YYCo-JHfzHqL476Q-Du2N2XjVYn_Nd3AB5GIASLne1dG6z81fYNSFaOvA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Jayoti, Divya</creator><creator>Peeketi, Akhil Reddy</creator><creator>Kumbhar, Pramod Yallappa</creator><creator>Swaminathan, Narasimhan</creator><creator>Annabattula, Ratna Kumar</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7681-0470</orcidid><orcidid>https://orcid.org/0000-0002-9955-7129</orcidid><orcidid>https://orcid.org/0000-0001-8572-3766</orcidid><orcidid>https://orcid.org/0000-0002-9492-8592</orcidid></search><sort><creationdate>20230412</creationdate><title>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</title><author>Jayoti, Divya ; Peeketi, Akhil Reddy ; Kumbhar, Pramod Yallappa ; Swaminathan, Narasimhan ; Annabattula, Ratna Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-1335ac62912401bc33d5f3c3285800a15871d9a9d4a0cb6632bbded874fb73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>finite element analysis</topic><topic>geometry</topic><topic>gravity</topic><topic>heat transfer</topic><topic>liquid crystals</topic><topic>polymers</topic><topic>temperature</topic><topic>torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayoti, Divya</creatorcontrib><creatorcontrib>Peeketi, Akhil Reddy</creatorcontrib><creatorcontrib>Kumbhar, Pramod Yallappa</creatorcontrib><creatorcontrib>Swaminathan, Narasimhan</creatorcontrib><creatorcontrib>Annabattula, Ratna Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayoti, Divya</au><au>Peeketi, Akhil Reddy</au><au>Kumbhar, Pramod Yallappa</au><au>Swaminathan, Narasimhan</au><au>Annabattula, Ratna Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-04-12</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>18362</spage><epage>18371</epage><pages>18362-18371</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36975405</pmid><doi>10.1021/acsami.3c02472</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7681-0470</orcidid><orcidid>https://orcid.org/0000-0002-9955-7129</orcidid><orcidid>https://orcid.org/0000-0001-8572-3766</orcidid><orcidid>https://orcid.org/0000-0002-9492-8592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-04, Vol.15 (14), p.18362-18371 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2800620112 |
source | ACS Publications |
subjects | Applications of Polymer, Composite, and Coating Materials finite element analysis geometry gravity heat transfer liquid crystals polymers temperature torque |
title | Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20Controlled%20Oscillations%20in%20Liquid%20Crystal%20Polymer%20Films%20Triggered%20by%20Thermal%20Feedback&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jayoti,%20Divya&rft.date=2023-04-12&rft.volume=15&rft.issue=14&rft.spage=18362&rft.epage=18371&rft.pages=18362-18371&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02472&rft_dat=%3Cproquest_cross%3E3040358173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800620112&rft_id=info:pmid/36975405&rfr_iscdi=true |