A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization
This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the sea...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2003-05, Vol.19 (3), p.231-260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 3 |
container_start_page | 231 |
container_title | The Artificial intelligence review |
container_volume | 19 |
creator | Tan, K C Khor, E F Lee, T H Yang, Y J |
description | This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment. |
doi_str_mv | 10.1023/A:1022863019997 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28003590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>977836861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-9e37075942a486e3ffda6bab856a0be6853dc8e1130c71fe3c5247b554a4b69e3</originalsourceid><addsrcrecordid>eNpdjj1PwzAYhC0EEqUws0YMbIHX3zZbqMqHVNSlzJGdOJDKrUvsVJRfjxFMTKfTPXc6hC4x3GAg9La6y0KUoIC11vIITTCXtJRMkGM0ASJ0SRTBp-gsxjUAcMLoBC2rYmXsWN6b6Npi_rnzYTApDIdivg9-TH3Ymmwq_xaGPr1vii4Mxcvoc2DXrkn93hXLXeo3_Zf5gc_RSWd8dBd_OkWvD_PV7KlcLB-fZ9WibAiXqdSOSpBcM2KYEo52XWuENVZxYcA6oThtG-UwptBI3Dna5LvScs4MsyK3p-j6d3c3hI_RxVRv-tg4783WhTHWRAFQriGDV__AdRiHbf5WY62AYqYo_QYm4F45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198031483</pqid></control><display><type>article</type><title>A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization</title><source>SpringerLink Journals</source><creator>Tan, K C ; Khor, E F ; Lee, T H ; Yang, Y J</creator><creatorcontrib>Tan, K C ; Khor, E F ; Lee, T H ; Yang, Y J</creatorcontrib><description>This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1023/A:1022863019997</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Competition ; Design specifications ; Exploitation ; Genetic algorithms ; Objectives ; Optimization ; Pareto optimum</subject><ispartof>The Artificial intelligence review, 2003-05, Vol.19 (3), p.231-260</ispartof><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-9e37075942a486e3ffda6bab856a0be6853dc8e1130c71fe3c5247b554a4b69e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tan, K C</creatorcontrib><creatorcontrib>Khor, E F</creatorcontrib><creatorcontrib>Lee, T H</creatorcontrib><creatorcontrib>Yang, Y J</creatorcontrib><title>A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization</title><title>The Artificial intelligence review</title><description>This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment.</description><subject>Competition</subject><subject>Design specifications</subject><subject>Exploitation</subject><subject>Genetic algorithms</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Pareto optimum</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjj1PwzAYhC0EEqUws0YMbIHX3zZbqMqHVNSlzJGdOJDKrUvsVJRfjxFMTKfTPXc6hC4x3GAg9La6y0KUoIC11vIITTCXtJRMkGM0ASJ0SRTBp-gsxjUAcMLoBC2rYmXsWN6b6Npi_rnzYTApDIdivg9-TH3Ymmwq_xaGPr1vii4Mxcvoc2DXrkn93hXLXeo3_Zf5gc_RSWd8dBd_OkWvD_PV7KlcLB-fZ9WibAiXqdSOSpBcM2KYEo52XWuENVZxYcA6oThtG-UwptBI3Dna5LvScs4MsyK3p-j6d3c3hI_RxVRv-tg4783WhTHWRAFQriGDV__AdRiHbf5WY62AYqYo_QYm4F45</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Tan, K C</creator><creator>Khor, E F</creator><creator>Lee, T H</creator><creator>Yang, Y J</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20030501</creationdate><title>A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization</title><author>Tan, K C ; Khor, E F ; Lee, T H ; Yang, Y J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-9e37075942a486e3ffda6bab856a0be6853dc8e1130c71fe3c5247b554a4b69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Competition</topic><topic>Design specifications</topic><topic>Exploitation</topic><topic>Genetic algorithms</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Pareto optimum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, K C</creatorcontrib><creatorcontrib>Khor, E F</creatorcontrib><creatorcontrib>Lee, T H</creatorcontrib><creatorcontrib>Yang, Y J</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, K C</au><au>Khor, E F</au><au>Lee, T H</au><au>Yang, Y J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization</atitle><jtitle>The Artificial intelligence review</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>19</volume><issue>3</issue><spage>231</spage><epage>260</epage><pages>231-260</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1022863019997</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2003-05, Vol.19 (3), p.231-260 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_miscellaneous_28003590 |
source | SpringerLink Journals |
subjects | Competition Design specifications Exploitation Genetic algorithms Objectives Optimization Pareto optimum |
title | A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tabu-Based%20Exploratory%20Evolutionary%20Algorithm%20for%20Multiobjective%20Optimization&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Tan,%20K%20C&rft.date=2003-05-01&rft.volume=19&rft.issue=3&rft.spage=231&rft.epage=260&rft.pages=231-260&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1023/A:1022863019997&rft_dat=%3Cproquest%3E977836861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198031483&rft_id=info:pmid/&rfr_iscdi=true |