Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation
The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consistin...
Gespeichert in:
Veröffentlicht in: | Molecular informatics 2023-06, Vol.42 (6), p.e2200223-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2200223 |
container_title | Molecular informatics |
container_volume | 42 |
creator | Chang, Jia‐Xi Zou, Jian‐Wei Lou, Chao‐Yuan Ye, Jia‐Xin Feng, Rui Li, Zi‐Yuan Hu, Gui‐Xiang |
description | The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors (
ΣVs,ind-
${{\rm { \Sigma }}{V}_{s,ind}^{-}}$
and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition. |
doi_str_mv | 10.1002/minf.202200223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828347218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EolXpyogisbCk-JLENhuqaKlU7jBbbuKAq8RJ7USoG4_AM_IkOGopEgse7GPrO5-OfwCOERwhCPF5qU0-whBjf8FkD_QRS1iIaIz2d3VEemDo3BL6RXBCGT8EPUJhBCFHfXA3le7r47Op_KYro9Og0KtWZ0EtbaMb_3QRPDzdPwZllalCm9dAmiwoVfomjXaN57VplK2tamRHH4GDXBZODbfnALxMrp7H1-H8bjobX87DlGBGwjxGcRZTgmKKGEoiTkiSQMlYxjMWE0JyquSCcZz4EnHEY6pUjCRGjHgakwE423hrW61a5RpRapeqopBGVa0TmHLOsP8t9ejpH3RZtdb46QRmfpiIdtYBGG2o1FbOWZWL2upS2rVAUHRpiy5tsUvbN5xste2iVNkO_8nWA3wDvOtCrf_RiZvZ7eRX_g1iT4qa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828347218</pqid></control><display><type>article</type><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><source>Wiley Blackwell Journals</source><creator>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</creator><creatorcontrib>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</creatorcontrib><description>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors (
ΣVs,ind-
${{\rm { \Sigma }}{V}_{s,ind}^{-}}$
and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.202200223</identifier><identifier>PMID: 37040091</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative energy sources ; Datasets ; Dipole moments ; electrostatic potential ; Electrostatic properties ; Gaussian process ; ionic liquid ; Ionic liquids ; Ions ; Mathematical models ; Modelling ; nonlinear modeling ; Parameters ; partition coefficient ; QSPR ; Solutes ; Solvation ; Statistical analysis</subject><ispartof>Molecular informatics, 2023-06, Vol.42 (6), p.e2200223-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</cites><orcidid>0000-0001-7727-768X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.202200223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.202200223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Jia‐Xi</creatorcontrib><creatorcontrib>Zou, Jian‐Wei</creatorcontrib><creatorcontrib>Lou, Chao‐Yuan</creatorcontrib><creatorcontrib>Ye, Jia‐Xin</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Li, Zi‐Yuan</creatorcontrib><creatorcontrib>Hu, Gui‐Xiang</creatorcontrib><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><title>Molecular informatics</title><addtitle>Mol Inform</addtitle><description>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors (
ΣVs,ind-
${{\rm { \Sigma }}{V}_{s,ind}^{-}}$
and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</description><subject>Alternative energy sources</subject><subject>Datasets</subject><subject>Dipole moments</subject><subject>electrostatic potential</subject><subject>Electrostatic properties</subject><subject>Gaussian process</subject><subject>ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>nonlinear modeling</subject><subject>Parameters</subject><subject>partition coefficient</subject><subject>QSPR</subject><subject>Solutes</subject><subject>Solvation</subject><subject>Statistical analysis</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EolXpyogisbCk-JLENhuqaKlU7jBbbuKAq8RJ7USoG4_AM_IkOGopEgse7GPrO5-OfwCOERwhCPF5qU0-whBjf8FkD_QRS1iIaIz2d3VEemDo3BL6RXBCGT8EPUJhBCFHfXA3le7r47Op_KYro9Og0KtWZ0EtbaMb_3QRPDzdPwZllalCm9dAmiwoVfomjXaN57VplK2tamRHH4GDXBZODbfnALxMrp7H1-H8bjobX87DlGBGwjxGcRZTgmKKGEoiTkiSQMlYxjMWE0JyquSCcZz4EnHEY6pUjCRGjHgakwE423hrW61a5RpRapeqopBGVa0TmHLOsP8t9ejpH3RZtdb46QRmfpiIdtYBGG2o1FbOWZWL2upS2rVAUHRpiy5tsUvbN5xste2iVNkO_8nWA3wDvOtCrf_RiZvZ7eRX_g1iT4qa</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Chang, Jia‐Xi</creator><creator>Zou, Jian‐Wei</creator><creator>Lou, Chao‐Yuan</creator><creator>Ye, Jia‐Xin</creator><creator>Feng, Rui</creator><creator>Li, Zi‐Yuan</creator><creator>Hu, Gui‐Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7727-768X</orcidid></search><sort><creationdate>202306</creationdate><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><author>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Datasets</topic><topic>Dipole moments</topic><topic>electrostatic potential</topic><topic>Electrostatic properties</topic><topic>Gaussian process</topic><topic>ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>nonlinear modeling</topic><topic>Parameters</topic><topic>partition coefficient</topic><topic>QSPR</topic><topic>Solutes</topic><topic>Solvation</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jia‐Xi</creatorcontrib><creatorcontrib>Zou, Jian‐Wei</creatorcontrib><creatorcontrib>Lou, Chao‐Yuan</creatorcontrib><creatorcontrib>Ye, Jia‐Xin</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Li, Zi‐Yuan</creatorcontrib><creatorcontrib>Hu, Gui‐Xiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jia‐Xi</au><au>Zou, Jian‐Wei</au><au>Lou, Chao‐Yuan</au><au>Ye, Jia‐Xin</au><au>Feng, Rui</au><au>Li, Zi‐Yuan</au><au>Hu, Gui‐Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol Inform</addtitle><date>2023-06</date><risdate>2023</risdate><volume>42</volume><issue>6</issue><spage>e2200223</spage><epage>n/a</epage><pages>e2200223-n/a</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors (
ΣVs,ind-
${{\rm { \Sigma }}{V}_{s,ind}^{-}}$
and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37040091</pmid><doi>10.1002/minf.202200223</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7727-768X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-1743 |
ispartof | Molecular informatics, 2023-06, Vol.42 (6), p.e2200223-n/a |
issn | 1868-1743 1868-1751 |
language | eng |
recordid | cdi_proquest_miscellaneous_2799827897 |
source | Wiley Blackwell Journals |
subjects | Alternative energy sources Datasets Dipole moments electrostatic potential Electrostatic properties Gaussian process ionic liquid Ionic liquids Ions Mathematical models Modelling nonlinear modeling Parameters partition coefficient QSPR Solutes Solvation Statistical analysis |
title | Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%E2%80%90to%E2%80%90ionic%20liquid%20partition:%20QSPR%20modeling%20and%20mechanistic%20interpretation&rft.jtitle=Molecular%20informatics&rft.au=Chang,%20Jia%E2%80%90Xi&rft.date=2023-06&rft.volume=42&rft.issue=6&rft.spage=e2200223&rft.epage=n/a&rft.pages=e2200223-n/a&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.202200223&rft_dat=%3Cproquest_cross%3E2828347218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828347218&rft_id=info:pmid/37040091&rfr_iscdi=true |