Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation

The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consistin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular informatics 2023-06, Vol.42 (6), p.e2200223-n/a
Hauptverfasser: Chang, Jia‐Xi, Zou, Jian‐Wei, Lou, Chao‐Yuan, Ye, Jia‐Xin, Feng, Rui, Li, Zi‐Yuan, Hu, Gui‐Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2200223
container_title Molecular informatics
container_volume 42
creator Chang, Jia‐Xi
Zou, Jian‐Wei
Lou, Chao‐Yuan
Ye, Jia‐Xin
Feng, Rui
Li, Zi‐Yuan
Hu, Gui‐Xiang
description The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors ( ΣVs,ind- ${{\rm { \Sigma }}{V}_{s,ind}^{-}}$ and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.
doi_str_mv 10.1002/minf.202200223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828347218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EolXpyogisbCk-JLENhuqaKlU7jBbbuKAq8RJ7USoG4_AM_IkOGopEgse7GPrO5-OfwCOERwhCPF5qU0-whBjf8FkD_QRS1iIaIz2d3VEemDo3BL6RXBCGT8EPUJhBCFHfXA3le7r47Op_KYro9Og0KtWZ0EtbaMb_3QRPDzdPwZllalCm9dAmiwoVfomjXaN57VplK2tamRHH4GDXBZODbfnALxMrp7H1-H8bjobX87DlGBGwjxGcRZTgmKKGEoiTkiSQMlYxjMWE0JyquSCcZz4EnHEY6pUjCRGjHgakwE423hrW61a5RpRapeqopBGVa0TmHLOsP8t9ejpH3RZtdb46QRmfpiIdtYBGG2o1FbOWZWL2upS2rVAUHRpiy5tsUvbN5xste2iVNkO_8nWA3wDvOtCrf_RiZvZ7eRX_g1iT4qa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828347218</pqid></control><display><type>article</type><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><source>Wiley Blackwell Journals</source><creator>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</creator><creatorcontrib>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</creatorcontrib><description>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors ( ΣVs,ind- ${{\rm { \Sigma }}{V}_{s,ind}^{-}}$ and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.202200223</identifier><identifier>PMID: 37040091</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative energy sources ; Datasets ; Dipole moments ; electrostatic potential ; Electrostatic properties ; Gaussian process ; ionic liquid ; Ionic liquids ; Ions ; Mathematical models ; Modelling ; nonlinear modeling ; Parameters ; partition coefficient ; QSPR ; Solutes ; Solvation ; Statistical analysis</subject><ispartof>Molecular informatics, 2023-06, Vol.42 (6), p.e2200223-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</cites><orcidid>0000-0001-7727-768X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.202200223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.202200223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Jia‐Xi</creatorcontrib><creatorcontrib>Zou, Jian‐Wei</creatorcontrib><creatorcontrib>Lou, Chao‐Yuan</creatorcontrib><creatorcontrib>Ye, Jia‐Xin</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Li, Zi‐Yuan</creatorcontrib><creatorcontrib>Hu, Gui‐Xiang</creatorcontrib><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><title>Molecular informatics</title><addtitle>Mol Inform</addtitle><description>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors ( ΣVs,ind- ${{\rm { \Sigma }}{V}_{s,ind}^{-}}$ and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</description><subject>Alternative energy sources</subject><subject>Datasets</subject><subject>Dipole moments</subject><subject>electrostatic potential</subject><subject>Electrostatic properties</subject><subject>Gaussian process</subject><subject>ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>nonlinear modeling</subject><subject>Parameters</subject><subject>partition coefficient</subject><subject>QSPR</subject><subject>Solutes</subject><subject>Solvation</subject><subject>Statistical analysis</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EolXpyogisbCk-JLENhuqaKlU7jBbbuKAq8RJ7USoG4_AM_IkOGopEgse7GPrO5-OfwCOERwhCPF5qU0-whBjf8FkD_QRS1iIaIz2d3VEemDo3BL6RXBCGT8EPUJhBCFHfXA3le7r47Op_KYro9Og0KtWZ0EtbaMb_3QRPDzdPwZllalCm9dAmiwoVfomjXaN57VplK2tamRHH4GDXBZODbfnALxMrp7H1-H8bjobX87DlGBGwjxGcRZTgmKKGEoiTkiSQMlYxjMWE0JyquSCcZz4EnHEY6pUjCRGjHgakwE423hrW61a5RpRapeqopBGVa0TmHLOsP8t9ejpH3RZtdb46QRmfpiIdtYBGG2o1FbOWZWL2upS2rVAUHRpiy5tsUvbN5xste2iVNkO_8nWA3wDvOtCrf_RiZvZ7eRX_g1iT4qa</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Chang, Jia‐Xi</creator><creator>Zou, Jian‐Wei</creator><creator>Lou, Chao‐Yuan</creator><creator>Ye, Jia‐Xin</creator><creator>Feng, Rui</creator><creator>Li, Zi‐Yuan</creator><creator>Hu, Gui‐Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7727-768X</orcidid></search><sort><creationdate>202306</creationdate><title>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</title><author>Chang, Jia‐Xi ; Zou, Jian‐Wei ; Lou, Chao‐Yuan ; Ye, Jia‐Xin ; Feng, Rui ; Li, Zi‐Yuan ; Hu, Gui‐Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3283-f515d57315718164933660a88d9d85333f7eab892633f191957ee51a218364923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Datasets</topic><topic>Dipole moments</topic><topic>electrostatic potential</topic><topic>Electrostatic properties</topic><topic>Gaussian process</topic><topic>ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>nonlinear modeling</topic><topic>Parameters</topic><topic>partition coefficient</topic><topic>QSPR</topic><topic>Solutes</topic><topic>Solvation</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jia‐Xi</creatorcontrib><creatorcontrib>Zou, Jian‐Wei</creatorcontrib><creatorcontrib>Lou, Chao‐Yuan</creatorcontrib><creatorcontrib>Ye, Jia‐Xin</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Li, Zi‐Yuan</creatorcontrib><creatorcontrib>Hu, Gui‐Xiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jia‐Xi</au><au>Zou, Jian‐Wei</au><au>Lou, Chao‐Yuan</au><au>Ye, Jia‐Xin</au><au>Feng, Rui</au><au>Li, Zi‐Yuan</au><au>Hu, Gui‐Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol Inform</addtitle><date>2023-06</date><risdate>2023</risdate><volume>42</volume><issue>6</issue><spage>e2200223</spage><epage>n/a</epage><pages>e2200223-n/a</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>The present work was devoted to explore the quantitative structure‐property relationships for gas‐to‐ionic liquid partition coefficients (log KILA). A series of linear models were first established for the representative dataset (IL01). The optimal model was a four‐parameter equation (1Ed) consisting of two electrostatic potential‐based descriptors ( ΣVs,ind- ${{\rm { \Sigma }}{V}_{s,ind}^{-}}$ and Vs,max), one 2D matrix‐based descriptor (J_D/Dt) and dipole moment (μ). All of the four descriptors introduced in the model can find the corresponding parameters, directly or indirectly, from Abraham's linear solvation energy relationship (LSER) or its theoretical alternatives, which endows the model good interpretability. Gaussian process was utilized to build the nonlinear model. Systematical validations, including 5‐fold cross‐validation for the training set, the validation for test set, as well as a more rigorous Monte Carlo cross‐validation were performed to verify the reliability of the constructed models. Applicability domain of the model was evaluated, and the Williams plot revealed that the model can be used to predict the log KILA values of structurally diverse solutes. The other 13 datasets were also processed in the same way, and all of the linear models with expressions similar to equation 1Ed were obtained. These models, whether linear of nonlinear, represent satisfactory statistical results, which confirms the universality of the method adopted in this study in QSPR modeling of gas‐to‐IL partition.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37040091</pmid><doi>10.1002/minf.202200223</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7727-768X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2023-06, Vol.42 (6), p.e2200223-n/a
issn 1868-1743
1868-1751
language eng
recordid cdi_proquest_miscellaneous_2799827897
source Wiley Blackwell Journals
subjects Alternative energy sources
Datasets
Dipole moments
electrostatic potential
Electrostatic properties
Gaussian process
ionic liquid
Ionic liquids
Ions
Mathematical models
Modelling
nonlinear modeling
Parameters
partition coefficient
QSPR
Solutes
Solvation
Statistical analysis
title Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%E2%80%90to%E2%80%90ionic%20liquid%20partition:%20QSPR%20modeling%20and%20mechanistic%20interpretation&rft.jtitle=Molecular%20informatics&rft.au=Chang,%20Jia%E2%80%90Xi&rft.date=2023-06&rft.volume=42&rft.issue=6&rft.spage=e2200223&rft.epage=n/a&rft.pages=e2200223-n/a&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.202200223&rft_dat=%3Cproquest_cross%3E2828347218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828347218&rft_id=info:pmid/37040091&rfr_iscdi=true