Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta

Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-06, Vol.62 (24), p.e202303124-n/a
Hauptverfasser: Ye, Yiru, Abou‐Hamad, Edy, Gong, Xuan, Shoinkhorova, Tuiana B., Dokania, Abhay, Gascon, Jorge, Chowdhury, Abhishek Dutta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e202303124
container_title Angewandte Chemie International Edition
container_volume 62
creator Ye, Yiru
Abou‐Hamad, Edy
Gong, Xuan
Shoinkhorova, Tuiana B.
Dokania, Abhay
Gascon, Jorge
Chowdhury, Abhishek Dutta
description Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.
doi_str_mv 10.1002/anie.202303124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821518391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3</originalsourceid><addsrcrecordid>eNqFkDtLxEAQxxdRfLeWErCxybk7k7i7jaCHL_BVaGOzzCWzGsklZzan2PkR_Ix-ElfOB9jYzAzDb34MfyE2lBwoKWGHmooHIAElKsjmxLLKQaWoNc7HOUNMtcnVklgJ4SHyxsjdRbGEWmZSgV0We-c0mVTNXdLfc3LO_T01bf3--ta3sRxTaOuq4eSqawsOIbl84i655bjsOTngntbEgqc68PpXXxU3R4fXw5P07PL4dLh_lhaoMUs97JYE5WjkvfRkQUpSmZEkS-tLTzLLc9BGaSSynkxRIJSlpQwQkRE8rortmXfStY9TDr0bV6HguqaG22lwoK01oHWOEd36gz60066J3zkwoHJl0KpIDWZU0bUhdOzdpKvG1L04Jd1nsu4zWfeTbDzY_NJOR2Muf_DvKCNgZ8BzVfPLPzq3f3F6-Cv_ANu1hVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821518391</pqid></control><display><type>article</type><title>Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta</title><source>Access via Wiley Online Library</source><creator>Ye, Yiru ; Abou‐Hamad, Edy ; Gong, Xuan ; Shoinkhorova, Tuiana B. ; Dokania, Abhay ; Gascon, Jorge ; Chowdhury, Abhishek Dutta</creator><creatorcontrib>Ye, Yiru ; Abou‐Hamad, Edy ; Gong, Xuan ; Shoinkhorova, Tuiana B. ; Dokania, Abhay ; Gascon, Jorge ; Chowdhury, Abhishek Dutta</creatorcontrib><description>Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202303124</identifier><identifier>PMID: 37040129</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbonyls ; Climate change ; Decarbonization ; Diffuse reflectance spectroscopy ; Gasoline ; Magnetic resonance spectroscopy ; Methanol ; Methanol-to-Gasoline ; Methanol-to-Hydrocarbon ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Operando Study ; Powertrain ; Reaction Mechanism ; Reaction mechanisms ; Spectroscopy ; Transportation industry ; Zeolite ; Zeolites</subject><ispartof>Angewandte Chemie International Edition, 2023-06, Vol.62 (24), p.e202303124-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3</citedby><cites>FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3</cites><orcidid>0000-0002-4121-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202303124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202303124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yiru</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Gong, Xuan</creatorcontrib><creatorcontrib>Shoinkhorova, Tuiana B.</creatorcontrib><creatorcontrib>Dokania, Abhay</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><creatorcontrib>Chowdhury, Abhishek Dutta</creatorcontrib><title>Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.</description><subject>Carbon dioxide</subject><subject>Carbonyls</subject><subject>Climate change</subject><subject>Decarbonization</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Gasoline</subject><subject>Magnetic resonance spectroscopy</subject><subject>Methanol</subject><subject>Methanol-to-Gasoline</subject><subject>Methanol-to-Hydrocarbon</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Operando Study</subject><subject>Powertrain</subject><subject>Reaction Mechanism</subject><subject>Reaction mechanisms</subject><subject>Spectroscopy</subject><subject>Transportation industry</subject><subject>Zeolite</subject><subject>Zeolites</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtLxEAQxxdRfLeWErCxybk7k7i7jaCHL_BVaGOzzCWzGsklZzan2PkR_Ix-ElfOB9jYzAzDb34MfyE2lBwoKWGHmooHIAElKsjmxLLKQaWoNc7HOUNMtcnVklgJ4SHyxsjdRbGEWmZSgV0We-c0mVTNXdLfc3LO_T01bf3--ta3sRxTaOuq4eSqawsOIbl84i655bjsOTngntbEgqc68PpXXxU3R4fXw5P07PL4dLh_lhaoMUs97JYE5WjkvfRkQUpSmZEkS-tLTzLLc9BGaSSynkxRIJSlpQwQkRE8rortmXfStY9TDr0bV6HguqaG22lwoK01oHWOEd36gz60066J3zkwoHJl0KpIDWZU0bUhdOzdpKvG1L04Jd1nsu4zWfeTbDzY_NJOR2Muf_DvKCNgZ8BzVfPLPzq3f3F6-Cv_ANu1hVs</recordid><startdate>20230612</startdate><enddate>20230612</enddate><creator>Ye, Yiru</creator><creator>Abou‐Hamad, Edy</creator><creator>Gong, Xuan</creator><creator>Shoinkhorova, Tuiana B.</creator><creator>Dokania, Abhay</creator><creator>Gascon, Jorge</creator><creator>Chowdhury, Abhishek Dutta</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid></search><sort><creationdate>20230612</creationdate><title>Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta</title><author>Ye, Yiru ; Abou‐Hamad, Edy ; Gong, Xuan ; Shoinkhorova, Tuiana B. ; Dokania, Abhay ; Gascon, Jorge ; Chowdhury, Abhishek Dutta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Carbonyls</topic><topic>Climate change</topic><topic>Decarbonization</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Gasoline</topic><topic>Magnetic resonance spectroscopy</topic><topic>Methanol</topic><topic>Methanol-to-Gasoline</topic><topic>Methanol-to-Hydrocarbon</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Operando Study</topic><topic>Powertrain</topic><topic>Reaction Mechanism</topic><topic>Reaction mechanisms</topic><topic>Spectroscopy</topic><topic>Transportation industry</topic><topic>Zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yiru</creatorcontrib><creatorcontrib>Abou‐Hamad, Edy</creatorcontrib><creatorcontrib>Gong, Xuan</creatorcontrib><creatorcontrib>Shoinkhorova, Tuiana B.</creatorcontrib><creatorcontrib>Dokania, Abhay</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><creatorcontrib>Chowdhury, Abhishek Dutta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yiru</au><au>Abou‐Hamad, Edy</au><au>Gong, Xuan</au><au>Shoinkhorova, Tuiana B.</au><au>Dokania, Abhay</au><au>Gascon, Jorge</au><au>Chowdhury, Abhishek Dutta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-06-12</date><risdate>2023</risdate><volume>62</volume><issue>24</issue><spage>e202303124</spage><epage>n/a</epage><pages>e202303124-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37040129</pmid><doi>10.1002/anie.202303124</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4121-7375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-06, Vol.62 (24), p.e202303124-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2799827753
source Access via Wiley Online Library
subjects Carbon dioxide
Carbonyls
Climate change
Decarbonization
Diffuse reflectance spectroscopy
Gasoline
Magnetic resonance spectroscopy
Methanol
Methanol-to-Gasoline
Methanol-to-Hydrocarbon
NMR
NMR spectroscopy
Nuclear magnetic resonance
Operando Study
Powertrain
Reaction Mechanism
Reaction mechanisms
Spectroscopy
Transportation industry
Zeolite
Zeolites
title Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Methanol%E2%80%90to%E2%80%90Gasoline%20Process%20Over%20Zeolite%20Beta&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ye,%20Yiru&rft.date=2023-06-12&rft.volume=62&rft.issue=24&rft.spage=e202303124&rft.epage=n/a&rft.pages=e202303124-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202303124&rft_dat=%3Cproquest_cross%3E2821518391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821518391&rft_id=info:pmid/37040129&rfr_iscdi=true