Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more

Introduction Fatigue is the most common and debilitating symptom experienced by cancer patients undergoing chemotherapy (CTX). Prediction of symptom severity can assist clinicians to identify high-risk patients and provide education to decrease symptom severity. The purpose of this study was to pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Supportive care in cancer 2023-05, Vol.31 (5), p.253-253, Article 253
Hauptverfasser: Kober, Kord M., Roy, Ritu, Conley, Yvette, Dhruva, Anand, Hammer, Marilyn J, Levine, Jon, Olshen, Adam, Miaskowski, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 5
container_start_page 253
container_title Supportive care in cancer
container_volume 31
creator Kober, Kord M.
Roy, Ritu
Conley, Yvette
Dhruva, Anand
Hammer, Marilyn J
Levine, Jon
Olshen, Adam
Miaskowski, Christine
description Introduction Fatigue is the most common and debilitating symptom experienced by cancer patients undergoing chemotherapy (CTX). Prediction of symptom severity can assist clinicians to identify high-risk patients and provide education to decrease symptom severity. The purpose of this study was to predict the severity of morning fatigue in the week following the administration of CTX. Methods Outpatients ( n = 1217) completed questionnaires 1 week prior to and 1 week following administration of CTX. Morning fatigue was measured using the Lee Fatigue Scale (LFS). Separate prediction models for morning fatigue severity were created using 157 demographic, clinical, symptom, and psychosocial adjustment characteristics and either morning fatigue scores or individual fatigue item scores. Prediction models were created using two regression and five machine learning approaches. Results Elastic net models provided the best fit across all models. For the EN model using individual LFS item scores, two of the 13 individual LFS items (i.e., “worn out,” “exhausted”) were the strongest predictors. Conclusions This study is the first to use machine learning techniques to accurately predict the severity of morning fatigue from prior to through the week following the administration of CTX using total and individual item scores from the Lee Fatigue Scale (LFS). Our findings suggest that the language used to assess clinical fatigue in oncology patients is important and that two simple questions may be used to predict morning fatigue severity.
doi_str_mv 10.1007/s00520-023-07723-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745223960</galeid><sourcerecordid>A745223960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f8a1d792e83bcb09658a8c75103ef9f8ef0b3fea580f201185b3501716ea75a63</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYMo9lr9Aj5IwBdftubPZpP4VoraQqE-6HPIZie3Kbuba5It3G9vtrdaKqUEJjDzm8MZDkLvKTmhhMjPmRDBSEMYb4iUtYoXaENbzhvJuX6JNkS3tGm5EEfoTc43hFApBXuNjrgkXCvFNmj4kWAIroQ44-jxFNMc5i32toTtAjjDLaRQ9jjU8VJ2tQ1zyTiBg3C7ku4apliuIdnd_gseIWc82T3OJYwj7mFVhLfolbdjhnf3_zH69e3rz7Pz5vLq-8XZ6WXj2paVxitLB6kZKN67nuhOKKucFJRw8Nor8KTnHqxQxDNCqRI9F_Um2oGVwnb8GH066O5S_L1ALmYK2cE42hnikg2TWismO0Yq-vE_9CYuaa7u7iimOqnFA7W1I5gw-1iSdauoOZWtYIzrbtU6eYKqb4ApuDiDD7X_aIEdFlyKOSfwZpfCZNPeUGLWaM0hWlOjNXfRmtXLh3vHSz_B8G_lb5YV4Acg19G8hfRw0jOyfwCG4614</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799286795</pqid></control><display><type>article</type><title>Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kober, Kord M. ; Roy, Ritu ; Conley, Yvette ; Dhruva, Anand ; Hammer, Marilyn J ; Levine, Jon ; Olshen, Adam ; Miaskowski, Christine</creator><creatorcontrib>Kober, Kord M. ; Roy, Ritu ; Conley, Yvette ; Dhruva, Anand ; Hammer, Marilyn J ; Levine, Jon ; Olshen, Adam ; Miaskowski, Christine</creatorcontrib><description>Introduction Fatigue is the most common and debilitating symptom experienced by cancer patients undergoing chemotherapy (CTX). Prediction of symptom severity can assist clinicians to identify high-risk patients and provide education to decrease symptom severity. The purpose of this study was to predict the severity of morning fatigue in the week following the administration of CTX. Methods Outpatients ( n = 1217) completed questionnaires 1 week prior to and 1 week following administration of CTX. Morning fatigue was measured using the Lee Fatigue Scale (LFS). Separate prediction models for morning fatigue severity were created using 157 demographic, clinical, symptom, and psychosocial adjustment characteristics and either morning fatigue scores or individual fatigue item scores. Prediction models were created using two regression and five machine learning approaches. Results Elastic net models provided the best fit across all models. For the EN model using individual LFS item scores, two of the 13 individual LFS items (i.e., “worn out,” “exhausted”) were the strongest predictors. Conclusions This study is the first to use machine learning techniques to accurately predict the severity of morning fatigue from prior to through the week following the administration of CTX using total and individual item scores from the Lee Fatigue Scale (LFS). Our findings suggest that the language used to assess clinical fatigue in oncology patients is important and that two simple questions may be used to predict morning fatigue severity.</description><identifier>ISSN: 0941-4355</identifier><identifier>EISSN: 1433-7339</identifier><identifier>DOI: 10.1007/s00520-023-07723-5</identifier><identifier>PMID: 37039882</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Antineoplastic Agents - adverse effects ; Antineoplastic Agents - therapeutic use ; Cancer ; Chemotherapy ; Circadian Rhythm ; Drug administration ; Fatigue ; Fatigue - chemically induced ; Fatigue - etiology ; Fatigue - psychology ; Health risks ; Humans ; Machine Learning ; Medical colleges ; Medical research ; Medicine ; Medicine &amp; Public Health ; Medicine, Experimental ; Neoplasms - complications ; Neoplasms - drug therapy ; Neoplasms - psychology ; Nursing ; Nursing Research ; Oncology ; Outpatients - psychology ; Pain Medicine ; Rehabilitation Medicine ; Side effects ; Surveys and Questionnaires</subject><ispartof>Supportive care in cancer, 2023-05, Vol.31 (5), p.253-253, Article 253</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f8a1d792e83bcb09658a8c75103ef9f8ef0b3fea580f201185b3501716ea75a63</citedby><cites>FETCH-LOGICAL-c442t-f8a1d792e83bcb09658a8c75103ef9f8ef0b3fea580f201185b3501716ea75a63</cites><orcidid>0000-0001-9732-3321 ; 0000-0003-2065-7846 ; 0000-0003-0681-5545 ; 0000-0002-8998-4514 ; 0000-0001-5552-7131 ; 0000-0002-9561-6144 ; 0000-0001-5170-2027 ; 0000-0002-1784-6067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00520-023-07723-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00520-023-07723-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37039882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kober, Kord M.</creatorcontrib><creatorcontrib>Roy, Ritu</creatorcontrib><creatorcontrib>Conley, Yvette</creatorcontrib><creatorcontrib>Dhruva, Anand</creatorcontrib><creatorcontrib>Hammer, Marilyn J</creatorcontrib><creatorcontrib>Levine, Jon</creatorcontrib><creatorcontrib>Olshen, Adam</creatorcontrib><creatorcontrib>Miaskowski, Christine</creatorcontrib><title>Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more</title><title>Supportive care in cancer</title><addtitle>Support Care Cancer</addtitle><addtitle>Support Care Cancer</addtitle><description>Introduction Fatigue is the most common and debilitating symptom experienced by cancer patients undergoing chemotherapy (CTX). Prediction of symptom severity can assist clinicians to identify high-risk patients and provide education to decrease symptom severity. The purpose of this study was to predict the severity of morning fatigue in the week following the administration of CTX. Methods Outpatients ( n = 1217) completed questionnaires 1 week prior to and 1 week following administration of CTX. Morning fatigue was measured using the Lee Fatigue Scale (LFS). Separate prediction models for morning fatigue severity were created using 157 demographic, clinical, symptom, and psychosocial adjustment characteristics and either morning fatigue scores or individual fatigue item scores. Prediction models were created using two regression and five machine learning approaches. Results Elastic net models provided the best fit across all models. For the EN model using individual LFS item scores, two of the 13 individual LFS items (i.e., “worn out,” “exhausted”) were the strongest predictors. Conclusions This study is the first to use machine learning techniques to accurately predict the severity of morning fatigue from prior to through the week following the administration of CTX using total and individual item scores from the Lee Fatigue Scale (LFS). Our findings suggest that the language used to assess clinical fatigue in oncology patients is important and that two simple questions may be used to predict morning fatigue severity.</description><subject>Analysis</subject><subject>Antineoplastic Agents - adverse effects</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Circadian Rhythm</subject><subject>Drug administration</subject><subject>Fatigue</subject><subject>Fatigue - chemically induced</subject><subject>Fatigue - etiology</subject><subject>Fatigue - psychology</subject><subject>Health risks</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical colleges</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Medicine, Experimental</subject><subject>Neoplasms - complications</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - psychology</subject><subject>Nursing</subject><subject>Nursing Research</subject><subject>Oncology</subject><subject>Outpatients - psychology</subject><subject>Pain Medicine</subject><subject>Rehabilitation Medicine</subject><subject>Side effects</subject><subject>Surveys and Questionnaires</subject><issn>0941-4355</issn><issn>1433-7339</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kV9rFTEQxYMo9lr9Aj5IwBdftubPZpP4VoraQqE-6HPIZie3Kbuba5It3G9vtrdaKqUEJjDzm8MZDkLvKTmhhMjPmRDBSEMYb4iUtYoXaENbzhvJuX6JNkS3tGm5EEfoTc43hFApBXuNjrgkXCvFNmj4kWAIroQ44-jxFNMc5i32toTtAjjDLaRQ9jjU8VJ2tQ1zyTiBg3C7ku4apliuIdnd_gseIWc82T3OJYwj7mFVhLfolbdjhnf3_zH69e3rz7Pz5vLq-8XZ6WXj2paVxitLB6kZKN67nuhOKKucFJRw8Nor8KTnHqxQxDNCqRI9F_Um2oGVwnb8GH066O5S_L1ALmYK2cE42hnikg2TWismO0Yq-vE_9CYuaa7u7iimOqnFA7W1I5gw-1iSdauoOZWtYIzrbtU6eYKqb4ApuDiDD7X_aIEdFlyKOSfwZpfCZNPeUGLWaM0hWlOjNXfRmtXLh3vHSz_B8G_lb5YV4Acg19G8hfRw0jOyfwCG4614</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kober, Kord M.</creator><creator>Roy, Ritu</creator><creator>Conley, Yvette</creator><creator>Dhruva, Anand</creator><creator>Hammer, Marilyn J</creator><creator>Levine, Jon</creator><creator>Olshen, Adam</creator><creator>Miaskowski, Christine</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88J</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2R</scope><scope>M2S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9732-3321</orcidid><orcidid>https://orcid.org/0000-0003-2065-7846</orcidid><orcidid>https://orcid.org/0000-0003-0681-5545</orcidid><orcidid>https://orcid.org/0000-0002-8998-4514</orcidid><orcidid>https://orcid.org/0000-0001-5552-7131</orcidid><orcidid>https://orcid.org/0000-0002-9561-6144</orcidid><orcidid>https://orcid.org/0000-0001-5170-2027</orcidid><orcidid>https://orcid.org/0000-0002-1784-6067</orcidid></search><sort><creationdate>20230501</creationdate><title>Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more</title><author>Kober, Kord M. ; Roy, Ritu ; Conley, Yvette ; Dhruva, Anand ; Hammer, Marilyn J ; Levine, Jon ; Olshen, Adam ; Miaskowski, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f8a1d792e83bcb09658a8c75103ef9f8ef0b3fea580f201185b3501716ea75a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antineoplastic Agents - adverse effects</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Circadian Rhythm</topic><topic>Drug administration</topic><topic>Fatigue</topic><topic>Fatigue - chemically induced</topic><topic>Fatigue - etiology</topic><topic>Fatigue - psychology</topic><topic>Health risks</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical colleges</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Medicine, Experimental</topic><topic>Neoplasms - complications</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - psychology</topic><topic>Nursing</topic><topic>Nursing Research</topic><topic>Oncology</topic><topic>Outpatients - psychology</topic><topic>Pain Medicine</topic><topic>Rehabilitation Medicine</topic><topic>Side effects</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kober, Kord M.</creatorcontrib><creatorcontrib>Roy, Ritu</creatorcontrib><creatorcontrib>Conley, Yvette</creatorcontrib><creatorcontrib>Dhruva, Anand</creatorcontrib><creatorcontrib>Hammer, Marilyn J</creatorcontrib><creatorcontrib>Levine, Jon</creatorcontrib><creatorcontrib>Olshen, Adam</creatorcontrib><creatorcontrib>Miaskowski, Christine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Supportive care in cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kober, Kord M.</au><au>Roy, Ritu</au><au>Conley, Yvette</au><au>Dhruva, Anand</au><au>Hammer, Marilyn J</au><au>Levine, Jon</au><au>Olshen, Adam</au><au>Miaskowski, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more</atitle><jtitle>Supportive care in cancer</jtitle><stitle>Support Care Cancer</stitle><addtitle>Support Care Cancer</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>31</volume><issue>5</issue><spage>253</spage><epage>253</epage><pages>253-253</pages><artnum>253</artnum><issn>0941-4355</issn><eissn>1433-7339</eissn><abstract>Introduction Fatigue is the most common and debilitating symptom experienced by cancer patients undergoing chemotherapy (CTX). Prediction of symptom severity can assist clinicians to identify high-risk patients and provide education to decrease symptom severity. The purpose of this study was to predict the severity of morning fatigue in the week following the administration of CTX. Methods Outpatients ( n = 1217) completed questionnaires 1 week prior to and 1 week following administration of CTX. Morning fatigue was measured using the Lee Fatigue Scale (LFS). Separate prediction models for morning fatigue severity were created using 157 demographic, clinical, symptom, and psychosocial adjustment characteristics and either morning fatigue scores or individual fatigue item scores. Prediction models were created using two regression and five machine learning approaches. Results Elastic net models provided the best fit across all models. For the EN model using individual LFS item scores, two of the 13 individual LFS items (i.e., “worn out,” “exhausted”) were the strongest predictors. Conclusions This study is the first to use machine learning techniques to accurately predict the severity of morning fatigue from prior to through the week following the administration of CTX using total and individual item scores from the Lee Fatigue Scale (LFS). Our findings suggest that the language used to assess clinical fatigue in oncology patients is important and that two simple questions may be used to predict morning fatigue severity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37039882</pmid><doi>10.1007/s00520-023-07723-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9732-3321</orcidid><orcidid>https://orcid.org/0000-0003-2065-7846</orcidid><orcidid>https://orcid.org/0000-0003-0681-5545</orcidid><orcidid>https://orcid.org/0000-0002-8998-4514</orcidid><orcidid>https://orcid.org/0000-0001-5552-7131</orcidid><orcidid>https://orcid.org/0000-0002-9561-6144</orcidid><orcidid>https://orcid.org/0000-0001-5170-2027</orcidid><orcidid>https://orcid.org/0000-0002-1784-6067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-4355
ispartof Supportive care in cancer, 2023-05, Vol.31 (5), p.253-253, Article 253
issn 0941-4355
1433-7339
language eng
recordid cdi_proquest_miscellaneous_2799827620
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Analysis
Antineoplastic Agents - adverse effects
Antineoplastic Agents - therapeutic use
Cancer
Chemotherapy
Circadian Rhythm
Drug administration
Fatigue
Fatigue - chemically induced
Fatigue - etiology
Fatigue - psychology
Health risks
Humans
Machine Learning
Medical colleges
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Neoplasms - complications
Neoplasms - drug therapy
Neoplasms - psychology
Nursing
Nursing Research
Oncology
Outpatients - psychology
Pain Medicine
Rehabilitation Medicine
Side effects
Surveys and Questionnaires
title Prediction of morning fatigue severity in outpatients receiving chemotherapy: less may still be more
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20morning%20fatigue%20severity%20in%20outpatients%20receiving%20chemotherapy:%20less%20may%20still%20be%20more&rft.jtitle=Supportive%20care%20in%20cancer&rft.au=Kober,%20Kord%20M.&rft.date=2023-05-01&rft.volume=31&rft.issue=5&rft.spage=253&rft.epage=253&rft.pages=253-253&rft.artnum=253&rft.issn=0941-4355&rft.eissn=1433-7339&rft_id=info:doi/10.1007/s00520-023-07723-5&rft_dat=%3Cgale_proqu%3EA745223960%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799286795&rft_id=info:pmid/37039882&rft_galeid=A745223960&rfr_iscdi=true