Relation of xylitol formation and lignocellulose degradation in yeast

One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pento...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2023-05, Vol.107 (10), p.3143-3151
Hauptverfasser: Bianchini, Italo de Andrade, Jofre, Fanny Machado, Queiroz, Sarah de Souza, Lacerda, Talita Martins, Felipe, Maria das Graças de Almeida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3151
container_issue 10
container_start_page 3143
container_title Applied microbiology and biotechnology
container_volume 107
creator Bianchini, Italo de Andrade
Jofre, Fanny Machado
Queiroz, Sarah de Souza
Lacerda, Talita Martins
Felipe, Maria das Graças de Almeida
description One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. Key points • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast’s robustness
doi_str_mv 10.1007/s00253-023-12495-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748155397</galeid><sourcerecordid>A748155397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-75f2072f85f67ae3590738fac24b99d2b83b64543760e3bcbee482ae63c227b53</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9ln9B1zIgBtdTM33x7KUqoWCUHUdMjM3Q0pmUpMZ6PvvzXOq5YlIFoF7f-dwLgeh1wSfEYzVh4IxFazFlLWEciNa9gTtCGe0xZLwp2iHiRKtEkafoBel3GJMqJbyOTphCjOjud6hyxuIbglpbpJv7vcxLCk2PuVpG7p5aGIY59RDjGtMBZoBxuyGbR3mZg-uLC_RM-9igVcP_yn6_vHy28Xn9vrLp6uL8-u250ouNYqnWFGvhZfKARMGK6a96ynvjBlop1knueBMSQys6zsArqkDyXpKVSfYKXq3-d7l9GOFstgplEM0N0Nai6XKGE0VF7Kib_9Cb9Oa55rOUo0NNYRI_kiNLoINs09Ldv3B1J4rrokQzKhKnf2Dqm-AKfRpBh_q_Ejw_khQmQXul9GtpdirrzfHLN3YPqdSMnh7l8Pk8t4SbA89261nW3u2v3q2rIrePFy3dhMMfyS_i60A24BSV_MI-fH8_9j-BFrkr4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809291164</pqid></control><display><type>article</type><title>Relation of xylitol formation and lignocellulose degradation in yeast</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Bianchini, Italo de Andrade ; Jofre, Fanny Machado ; Queiroz, Sarah de Souza ; Lacerda, Talita Martins ; Felipe, Maria das Graças de Almeida</creator><creatorcontrib>Bianchini, Italo de Andrade ; Jofre, Fanny Machado ; Queiroz, Sarah de Souza ; Lacerda, Talita Martins ; Felipe, Maria das Graças de Almeida</creatorcontrib><description>One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. Key points • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast’s robustness</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-023-12495-3</identifier><identifier>PMID: 37039848</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Bioconversion ; Biodegradation ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cell walls ; Cellulose ; Chemical properties ; Fermentation ; Furans ; Hemicellulose ; Hydrolysates ; Inhibitors ; Life Sciences ; Lignin ; Lignin - metabolism ; Lignocellulose ; Microbial Genetics and Genomics ; Microbial metabolism ; Microbiological research ; Microbiology ; Microorganisms ; Mini-Review ; Pentose ; Pesticides ; Phenols ; Physiological aspects ; Physiology ; Production processes ; Saccharomyces cerevisiae - metabolism ; Solubilization ; Toxicity ; Xylitol ; Xylose ; Xylose - metabolism ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2023-05, Vol.107 (10), p.3143-3151</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-75f2072f85f67ae3590738fac24b99d2b83b64543760e3bcbee482ae63c227b53</citedby><cites>FETCH-LOGICAL-c476t-75f2072f85f67ae3590738fac24b99d2b83b64543760e3bcbee482ae63c227b53</cites><orcidid>0000-0002-4801-1134 ; 0000-0003-4507-9181 ; 0000-0002-4308-0464 ; 0000-0003-3433-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-023-12495-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-023-12495-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37039848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchini, Italo de Andrade</creatorcontrib><creatorcontrib>Jofre, Fanny Machado</creatorcontrib><creatorcontrib>Queiroz, Sarah de Souza</creatorcontrib><creatorcontrib>Lacerda, Talita Martins</creatorcontrib><creatorcontrib>Felipe, Maria das Graças de Almeida</creatorcontrib><title>Relation of xylitol formation and lignocellulose degradation in yeast</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. Key points • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast’s robustness</description><subject>Adaptation</subject><subject>Bioconversion</subject><subject>Biodegradation</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Chemical properties</subject><subject>Fermentation</subject><subject>Furans</subject><subject>Hemicellulose</subject><subject>Hydrolysates</subject><subject>Inhibitors</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial metabolism</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mini-Review</subject><subject>Pentose</subject><subject>Pesticides</subject><subject>Phenols</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Production processes</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Solubilization</subject><subject>Toxicity</subject><subject>Xylitol</subject><subject>Xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1rFTEUxYMo9ln9B1zIgBtdTM33x7KUqoWCUHUdMjM3Q0pmUpMZ6PvvzXOq5YlIFoF7f-dwLgeh1wSfEYzVh4IxFazFlLWEciNa9gTtCGe0xZLwp2iHiRKtEkafoBel3GJMqJbyOTphCjOjud6hyxuIbglpbpJv7vcxLCk2PuVpG7p5aGIY59RDjGtMBZoBxuyGbR3mZg-uLC_RM-9igVcP_yn6_vHy28Xn9vrLp6uL8-u250ouNYqnWFGvhZfKARMGK6a96ynvjBlop1knueBMSQys6zsArqkDyXpKVSfYKXq3-d7l9GOFstgplEM0N0Nai6XKGE0VF7Kib_9Cb9Oa55rOUo0NNYRI_kiNLoINs09Ldv3B1J4rrokQzKhKnf2Dqm-AKfRpBh_q_Ejw_khQmQXul9GtpdirrzfHLN3YPqdSMnh7l8Pk8t4SbA89261nW3u2v3q2rIrePFy3dhMMfyS_i60A24BSV_MI-fH8_9j-BFrkr4U</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Bianchini, Italo de Andrade</creator><creator>Jofre, Fanny Machado</creator><creator>Queiroz, Sarah de Souza</creator><creator>Lacerda, Talita Martins</creator><creator>Felipe, Maria das Graças de Almeida</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4801-1134</orcidid><orcidid>https://orcid.org/0000-0003-4507-9181</orcidid><orcidid>https://orcid.org/0000-0002-4308-0464</orcidid><orcidid>https://orcid.org/0000-0003-3433-9777</orcidid></search><sort><creationdate>20230501</creationdate><title>Relation of xylitol formation and lignocellulose degradation in yeast</title><author>Bianchini, Italo de Andrade ; Jofre, Fanny Machado ; Queiroz, Sarah de Souza ; Lacerda, Talita Martins ; Felipe, Maria das Graças de Almeida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-75f2072f85f67ae3590738fac24b99d2b83b64543760e3bcbee482ae63c227b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Bioconversion</topic><topic>Biodegradation</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Chemical properties</topic><topic>Fermentation</topic><topic>Furans</topic><topic>Hemicellulose</topic><topic>Hydrolysates</topic><topic>Inhibitors</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial metabolism</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mini-Review</topic><topic>Pentose</topic><topic>Pesticides</topic><topic>Phenols</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Production processes</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Solubilization</topic><topic>Toxicity</topic><topic>Xylitol</topic><topic>Xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchini, Italo de Andrade</creatorcontrib><creatorcontrib>Jofre, Fanny Machado</creatorcontrib><creatorcontrib>Queiroz, Sarah de Souza</creatorcontrib><creatorcontrib>Lacerda, Talita Martins</creatorcontrib><creatorcontrib>Felipe, Maria das Graças de Almeida</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchini, Italo de Andrade</au><au>Jofre, Fanny Machado</au><au>Queiroz, Sarah de Souza</au><au>Lacerda, Talita Martins</au><au>Felipe, Maria das Graças de Almeida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation of xylitol formation and lignocellulose degradation in yeast</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>107</volume><issue>10</issue><spage>3143</spage><epage>3151</epage><pages>3143-3151</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. Key points • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast’s robustness</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37039848</pmid><doi>10.1007/s00253-023-12495-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4801-1134</orcidid><orcidid>https://orcid.org/0000-0003-4507-9181</orcidid><orcidid>https://orcid.org/0000-0002-4308-0464</orcidid><orcidid>https://orcid.org/0000-0003-3433-9777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2023-05, Vol.107 (10), p.3143-3151
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2799827456
source MEDLINE; SpringerNature Journals
subjects Adaptation
Bioconversion
Biodegradation
Biomass
Biomedical and Life Sciences
Biotechnology
Cell walls
Cellulose
Chemical properties
Fermentation
Furans
Hemicellulose
Hydrolysates
Inhibitors
Life Sciences
Lignin
Lignin - metabolism
Lignocellulose
Microbial Genetics and Genomics
Microbial metabolism
Microbiological research
Microbiology
Microorganisms
Mini-Review
Pentose
Pesticides
Phenols
Physiological aspects
Physiology
Production processes
Saccharomyces cerevisiae - metabolism
Solubilization
Toxicity
Xylitol
Xylose
Xylose - metabolism
Yeast
Yeast fungi
Yeasts
title Relation of xylitol formation and lignocellulose degradation in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20of%20xylitol%20formation%20and%20lignocellulose%20degradation%20in%20yeast&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Bianchini,%20Italo%20de%20Andrade&rft.date=2023-05-01&rft.volume=107&rft.issue=10&rft.spage=3143&rft.epage=3151&rft.pages=3143-3151&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-023-12495-3&rft_dat=%3Cgale_proqu%3EA748155397%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809291164&rft_id=info:pmid/37039848&rft_galeid=A748155397&rfr_iscdi=true