Efficient modeling of 3-D photonic crystals for integrated optical devices
We propose a full-wave numerical model of a three-dimensional (3-D) photonic crystal with the absolute photonic bandgap (PBG) centered at /spl lambda//spl sim/1.6 μm. The analyzed structure is widely used in integrated optical circuitry. The electromagnetic analysis is performed by using the finite-...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2006-01, Vol.18 (2), p.319-321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a full-wave numerical model of a three-dimensional (3-D) photonic crystal with the absolute photonic bandgap (PBG) centered at /spl lambda//spl sim/1.6 μm. The analyzed structure is widely used in integrated optical circuitry. The electromagnetic analysis is performed by using the finite-element method (FEM) and transmission line matrix-integral equation (TLMIE) method. We analyze the reflection properties and compare theoretical results to experimental data. Due to its exact boundary conditions, TLMIE shows much higher accuracy with respect to FEM in the PBG optical band. As a demonstration, we have realized and analyzed a holographic polymer dispersed liquid crystal grating. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2005.861991 |