Correlation between strand stability and magnet performance

Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2005-06, Vol.15 (2), p.1524-1528
Hauptverfasser: Dietderich, D.R., Bartlett, S.E., Caspi, S., Ferracin, P., Gourlay, S.A., Higley, H.C., Lietzke, A.F., Mattafirri, S., McInturff, A.D., Sabbi, G.L., Scanlan, R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 2
container_start_page 1524
container_title IEEE transactions on applied superconductivity
container_volume 15
creator Dietderich, D.R.
Bartlett, S.E.
Caspi, S.
Ferracin, P.
Gourlay, S.A.
Higley, H.C.
Lietzke, A.F.
Mattafirri, S.
McInturff, A.D.
Sabbi, G.L.
Scanlan, R.M.
description Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.
doi_str_mv 10.1109/TASC.2005.849155
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27991797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1439935</ieee_id><sourcerecordid>28108480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcF29C15GQT31WJWP7gRPy-CuwoIH13NIZyqapScZkwyy_940vbDgQS-phHrqpcjTdS8RtoigP9xcfNttGYDcKqFRykfdWTtVzyTKx-0OEnvFGH_aPSvlFgCFEvKs-7hLOdNsa0hxM1H9TRQ3pWYb963YKcyh3m2W18H-iFQ3R8o-5YONjp53T7ydC724r-fd98tPN7vP_fXXqy-7i-veCcVqL1EAWiVQTxL2erBkHaM9kvL7kQFv28LABZcKWtN7QsH8oIWaRuVxAn7evV5zU6nBFBcquZ8uxUiuGi1Bj6Ix71fmmNOvE5VqDqE4mmcbKZ2KUXpgMHKFjXz3T5IpBCUU_B8ctcZRjw188xd4m045ti8xGtkSpocGwQq5nErJ5M0xh4PNdwbBLAbNYtAsBs1qsI28vc-1xdnZNykulIe5QXM1CNW4VysXiOihLbjWXPI_RUOhcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912084896</pqid></control><display><type>article</type><title>Correlation between strand stability and magnet performance</title><source>IEEE Electronic Library (IEL)</source><creator>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M.</creator><creatorcontrib>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2005.849155</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>43 ; 75 ; Applied sciences ; BNL ; Conductivity ; Conductors ; Constraining ; COPPER ; Correlation ; Critical current ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Flux ; flux jumps ; magnet ; MAGNETIC FIELDS ; MAGNETIC FLUX ; MAGNETS ; Niobium ; RRR ; STABILITY ; Strands ; Superconductivity ; Testing ; Tin ; Various equipment and components ; Wire</subject><ispartof>IEEE transactions on applied superconductivity, 2005-06, Vol.15 (2), p.1524-1528</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</citedby><cites>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1439935$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1439935$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16938648$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/950974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietderich, D.R.</creatorcontrib><creatorcontrib>Bartlett, S.E.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Ferracin, P.</creatorcontrib><creatorcontrib>Gourlay, S.A.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Lietzke, A.F.</creatorcontrib><creatorcontrib>Mattafirri, S.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><creatorcontrib>Sabbi, G.L.</creatorcontrib><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Correlation between strand stability and magnet performance</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</description><subject>43</subject><subject>75</subject><subject>Applied sciences</subject><subject>BNL</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Constraining</subject><subject>COPPER</subject><subject>Correlation</subject><subject>Critical current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>flux jumps</subject><subject>magnet</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETS</subject><subject>Niobium</subject><subject>RRR</subject><subject>STABILITY</subject><subject>Strands</subject><subject>Superconductivity</subject><subject>Testing</subject><subject>Tin</subject><subject>Various equipment and components</subject><subject>Wire</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU2LFDEQhhtRcF29C15GQT31WJWP7gRPy-CuwoIH13NIZyqapScZkwyy_940vbDgQS-phHrqpcjTdS8RtoigP9xcfNttGYDcKqFRykfdWTtVzyTKx-0OEnvFGH_aPSvlFgCFEvKs-7hLOdNsa0hxM1H9TRQ3pWYb963YKcyh3m2W18H-iFQ3R8o-5YONjp53T7ydC724r-fd98tPN7vP_fXXqy-7i-veCcVqL1EAWiVQTxL2erBkHaM9kvL7kQFv28LABZcKWtN7QsH8oIWaRuVxAn7evV5zU6nBFBcquZ8uxUiuGi1Bj6Ix71fmmNOvE5VqDqE4mmcbKZ2KUXpgMHKFjXz3T5IpBCUU_B8ctcZRjw188xd4m045ti8xGtkSpocGwQq5nErJ5M0xh4PNdwbBLAbNYtAsBs1qsI28vc-1xdnZNykulIe5QXM1CNW4VysXiOihLbjWXPI_RUOhcA</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Dietderich, D.R.</creator><creator>Bartlett, S.E.</creator><creator>Caspi, S.</creator><creator>Ferracin, P.</creator><creator>Gourlay, S.A.</creator><creator>Higley, H.C.</creator><creator>Lietzke, A.F.</creator><creator>Mattafirri, S.</creator><creator>McInturff, A.D.</creator><creator>Sabbi, G.L.</creator><creator>Scanlan, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20050601</creationdate><title>Correlation between strand stability and magnet performance</title><author>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>43</topic><topic>75</topic><topic>Applied sciences</topic><topic>BNL</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Constraining</topic><topic>COPPER</topic><topic>Correlation</topic><topic>Critical current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>flux jumps</topic><topic>magnet</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETS</topic><topic>Niobium</topic><topic>RRR</topic><topic>STABILITY</topic><topic>Strands</topic><topic>Superconductivity</topic><topic>Testing</topic><topic>Tin</topic><topic>Various equipment and components</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietderich, D.R.</creatorcontrib><creatorcontrib>Bartlett, S.E.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Ferracin, P.</creatorcontrib><creatorcontrib>Gourlay, S.A.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Lietzke, A.F.</creatorcontrib><creatorcontrib>Mattafirri, S.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><creatorcontrib>Sabbi, G.L.</creatorcontrib><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dietderich, D.R.</au><au>Bartlett, S.E.</au><au>Caspi, S.</au><au>Ferracin, P.</au><au>Gourlay, S.A.</au><au>Higley, H.C.</au><au>Lietzke, A.F.</au><au>Mattafirri, S.</au><au>McInturff, A.D.</au><au>Sabbi, G.L.</au><au>Scanlan, R.M.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between strand stability and magnet performance</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2005-06-01</date><risdate>2005</risdate><volume>15</volume><issue>2</issue><spage>1524</spage><epage>1528</epage><pages>1524-1528</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2005.849155</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2005-06, Vol.15 (2), p.1524-1528
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_27991797
source IEEE Electronic Library (IEL)
subjects 43
75
Applied sciences
BNL
Conductivity
Conductors
Constraining
COPPER
Correlation
Critical current
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Flux
flux jumps
magnet
MAGNETIC FIELDS
MAGNETIC FLUX
MAGNETS
Niobium
RRR
STABILITY
Strands
Superconductivity
Testing
Tin
Various equipment and components
Wire
title Correlation between strand stability and magnet performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20strand%20stability%20and%20magnet%20performance&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dietderich,%20D.R.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2005-06-01&rft.volume=15&rft.issue=2&rft.spage=1524&rft.epage=1528&rft.pages=1524-1528&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2005.849155&rft_dat=%3Cproquest_RIE%3E28108480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912084896&rft_id=info:pmid/&rft_ieee_id=1439935&rfr_iscdi=true