Correlation between strand stability and magnet performance
Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2005-06, Vol.15 (2), p.1524-1528 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1528 |
---|---|
container_issue | 2 |
container_start_page | 1524 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 15 |
creator | Dietderich, D.R. Bartlett, S.E. Caspi, S. Ferracin, P. Gourlay, S.A. Higley, H.C. Lietzke, A.F. Mattafirri, S. McInturff, A.D. Sabbi, G.L. Scanlan, R.M. |
description | Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current. |
doi_str_mv | 10.1109/TASC.2005.849155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27991797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1439935</ieee_id><sourcerecordid>28108480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcF29C15GQT31WJWP7gRPy-CuwoIH13NIZyqapScZkwyy_940vbDgQS-phHrqpcjTdS8RtoigP9xcfNttGYDcKqFRykfdWTtVzyTKx-0OEnvFGH_aPSvlFgCFEvKs-7hLOdNsa0hxM1H9TRQ3pWYb963YKcyh3m2W18H-iFQ3R8o-5YONjp53T7ydC724r-fd98tPN7vP_fXXqy-7i-veCcVqL1EAWiVQTxL2erBkHaM9kvL7kQFv28LABZcKWtN7QsH8oIWaRuVxAn7evV5zU6nBFBcquZ8uxUiuGi1Bj6Ix71fmmNOvE5VqDqE4mmcbKZ2KUXpgMHKFjXz3T5IpBCUU_B8ctcZRjw188xd4m045ti8xGtkSpocGwQq5nErJ5M0xh4PNdwbBLAbNYtAsBs1qsI28vc-1xdnZNykulIe5QXM1CNW4VysXiOihLbjWXPI_RUOhcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912084896</pqid></control><display><type>article</type><title>Correlation between strand stability and magnet performance</title><source>IEEE Electronic Library (IEL)</source><creator>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M.</creator><creatorcontrib>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2005.849155</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>43 ; 75 ; Applied sciences ; BNL ; Conductivity ; Conductors ; Constraining ; COPPER ; Correlation ; Critical current ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Flux ; flux jumps ; magnet ; MAGNETIC FIELDS ; MAGNETIC FLUX ; MAGNETS ; Niobium ; RRR ; STABILITY ; Strands ; Superconductivity ; Testing ; Tin ; Various equipment and components ; Wire</subject><ispartof>IEEE transactions on applied superconductivity, 2005-06, Vol.15 (2), p.1524-1528</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</citedby><cites>FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1439935$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1439935$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16938648$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/950974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietderich, D.R.</creatorcontrib><creatorcontrib>Bartlett, S.E.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Ferracin, P.</creatorcontrib><creatorcontrib>Gourlay, S.A.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Lietzke, A.F.</creatorcontrib><creatorcontrib>Mattafirri, S.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><creatorcontrib>Sabbi, G.L.</creatorcontrib><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Correlation between strand stability and magnet performance</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</description><subject>43</subject><subject>75</subject><subject>Applied sciences</subject><subject>BNL</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Constraining</subject><subject>COPPER</subject><subject>Correlation</subject><subject>Critical current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>flux jumps</subject><subject>magnet</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETS</subject><subject>Niobium</subject><subject>RRR</subject><subject>STABILITY</subject><subject>Strands</subject><subject>Superconductivity</subject><subject>Testing</subject><subject>Tin</subject><subject>Various equipment and components</subject><subject>Wire</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU2LFDEQhhtRcF29C15GQT31WJWP7gRPy-CuwoIH13NIZyqapScZkwyy_940vbDgQS-phHrqpcjTdS8RtoigP9xcfNttGYDcKqFRykfdWTtVzyTKx-0OEnvFGH_aPSvlFgCFEvKs-7hLOdNsa0hxM1H9TRQ3pWYb963YKcyh3m2W18H-iFQ3R8o-5YONjp53T7ydC724r-fd98tPN7vP_fXXqy-7i-veCcVqL1EAWiVQTxL2erBkHaM9kvL7kQFv28LABZcKWtN7QsH8oIWaRuVxAn7evV5zU6nBFBcquZ8uxUiuGi1Bj6Ix71fmmNOvE5VqDqE4mmcbKZ2KUXpgMHKFjXz3T5IpBCUU_B8ctcZRjw188xd4m045ti8xGtkSpocGwQq5nErJ5M0xh4PNdwbBLAbNYtAsBs1qsI28vc-1xdnZNykulIe5QXM1CNW4VysXiOihLbjWXPI_RUOhcA</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Dietderich, D.R.</creator><creator>Bartlett, S.E.</creator><creator>Caspi, S.</creator><creator>Ferracin, P.</creator><creator>Gourlay, S.A.</creator><creator>Higley, H.C.</creator><creator>Lietzke, A.F.</creator><creator>Mattafirri, S.</creator><creator>McInturff, A.D.</creator><creator>Sabbi, G.L.</creator><creator>Scanlan, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20050601</creationdate><title>Correlation between strand stability and magnet performance</title><author>Dietderich, D.R. ; Bartlett, S.E. ; Caspi, S. ; Ferracin, P. ; Gourlay, S.A. ; Higley, H.C. ; Lietzke, A.F. ; Mattafirri, S. ; McInturff, A.D. ; Sabbi, G.L. ; Scanlan, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-51401a8419b50d96aeac2ed1e8fd72039150634358096affe142f6948b78f1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>43</topic><topic>75</topic><topic>Applied sciences</topic><topic>BNL</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Constraining</topic><topic>COPPER</topic><topic>Correlation</topic><topic>Critical current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>flux jumps</topic><topic>magnet</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETS</topic><topic>Niobium</topic><topic>RRR</topic><topic>STABILITY</topic><topic>Strands</topic><topic>Superconductivity</topic><topic>Testing</topic><topic>Tin</topic><topic>Various equipment and components</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietderich, D.R.</creatorcontrib><creatorcontrib>Bartlett, S.E.</creatorcontrib><creatorcontrib>Caspi, S.</creatorcontrib><creatorcontrib>Ferracin, P.</creatorcontrib><creatorcontrib>Gourlay, S.A.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Lietzke, A.F.</creatorcontrib><creatorcontrib>Mattafirri, S.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><creatorcontrib>Sabbi, G.L.</creatorcontrib><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dietderich, D.R.</au><au>Bartlett, S.E.</au><au>Caspi, S.</au><au>Ferracin, P.</au><au>Gourlay, S.A.</au><au>Higley, H.C.</au><au>Lietzke, A.F.</au><au>Mattafirri, S.</au><au>McInturff, A.D.</au><au>Sabbi, G.L.</au><au>Scanlan, R.M.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between strand stability and magnet performance</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2005-06-01</date><risdate>2005</risdate><volume>15</volume><issue>2</issue><spage>1524</spage><epage>1528</epage><pages>1524-1528</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J/sub c/ Nb/sub 3/Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2005.849155</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2005-06, Vol.15 (2), p.1524-1528 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_27991797 |
source | IEEE Electronic Library (IEL) |
subjects | 43 75 Applied sciences BNL Conductivity Conductors Constraining COPPER Correlation Critical current Electrical engineering. Electrical power engineering Electromagnets Exact sciences and technology Flux flux jumps magnet MAGNETIC FIELDS MAGNETIC FLUX MAGNETS Niobium RRR STABILITY Strands Superconductivity Testing Tin Various equipment and components Wire |
title | Correlation between strand stability and magnet performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20strand%20stability%20and%20magnet%20performance&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dietderich,%20D.R.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2005-06-01&rft.volume=15&rft.issue=2&rft.spage=1524&rft.epage=1528&rft.pages=1524-1528&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2005.849155&rft_dat=%3Cproquest_RIE%3E28108480%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912084896&rft_id=info:pmid/&rft_ieee_id=1439935&rfr_iscdi=true |