Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction
Purpose of Review Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting con...
Gespeichert in:
Veröffentlicht in: | Current cardiology reports 2023-06, Vol.25 (6), p.525-534 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 6 |
container_start_page | 525 |
container_title | Current cardiology reports |
container_volume | 25 |
creator | Chatterjee, Neal A. |
description | Purpose of Review
Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities in SCD prediction and prevention.
Recent Findings
There have been considerable advancements in both non-invasive and invasive measures for SCD risk prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel methodological approaches including application of machine learning, incorporation of competing risk, and use of computational modeling have underscored a future of personalized risk prediction.
Summary
SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD prediction in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality. |
doi_str_mv | 10.1007/s11886-023-01871-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799172941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799172941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-24b49683a7cfc02a5473eed4a999734ae131fead2f04e955296a160c77c4bd4d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoI0vAt8QxG6QtIFUCCZgt1z4pKW1c7GTo2-M2hZHp_NJ_kc6H0CXBNwRjcRsIKYo8xZSlmBSCpPgIDUnGeMqIwMc7HS0mCjpAZyEsMaaxxk_RgAnM8izjQzR-9WBr09auSVyVvHXWQpOU2ttam2QMuv28S2bOfdXNInmArWtsMllCX5h6vRfn6KTSqwAXhztCH9PJe_mUzl4en8v7WWoYF21K-ZzLvGBamMpgqjMuGIDlWkopGNdAGKlAW1phDjLLqMw1ybERwvC55ZaN0HW_u_Huu4PQqnUdDKxWugHXBUWFlERQyUmM0j5qvAvBQ6U2vl5rv1UEqx091dNTkZ7a01M4lq4O-918Dfav8osrBlgfCNFqFuDV0nW-iT__N_sD4KJ5IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799172941</pqid></control><display><type>article</type><title>Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Chatterjee, Neal A.</creator><creatorcontrib>Chatterjee, Neal A.</creatorcontrib><description>Purpose of Review
Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities in SCD prediction and prevention.
Recent Findings
There have been considerable advancements in both non-invasive and invasive measures for SCD risk prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel methodological approaches including application of machine learning, incorporation of competing risk, and use of computational modeling have underscored a future of personalized risk prediction.
Summary
SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD prediction in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality.</description><identifier>ISSN: 1523-3782</identifier><identifier>EISSN: 1534-3170</identifier><identifier>DOI: 10.1007/s11886-023-01871-0</identifier><identifier>PMID: 37036554</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomarkers ; Cardiology ; Death, Sudden, Cardiac - etiology ; Death, Sudden, Cardiac - prevention & control ; Electrocardiography ; Humans ; Invasive Electrophysiology and Pacing (EK Heist ; Medicine ; Medicine & Public Health ; Risk Assessment ; Risk Factors ; Section Editor ; Stroke Volume - physiology ; Topical Collection on Invasive Electrophysiology and Pacing ; Ventricular Function, Left</subject><ispartof>Current cardiology reports, 2023-06, Vol.25 (6), p.525-534</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-24b49683a7cfc02a5473eed4a999734ae131fead2f04e955296a160c77c4bd4d3</citedby><cites>FETCH-LOGICAL-c347t-24b49683a7cfc02a5473eed4a999734ae131fead2f04e955296a160c77c4bd4d3</cites><orcidid>0000-0002-8290-127X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11886-023-01871-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11886-023-01871-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37036554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Neal A.</creatorcontrib><title>Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction</title><title>Current cardiology reports</title><addtitle>Curr Cardiol Rep</addtitle><addtitle>Curr Cardiol Rep</addtitle><description>Purpose of Review
Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities in SCD prediction and prevention.
Recent Findings
There have been considerable advancements in both non-invasive and invasive measures for SCD risk prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel methodological approaches including application of machine learning, incorporation of competing risk, and use of computational modeling have underscored a future of personalized risk prediction.
Summary
SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD prediction in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality.</description><subject>Biomarkers</subject><subject>Cardiology</subject><subject>Death, Sudden, Cardiac - etiology</subject><subject>Death, Sudden, Cardiac - prevention & control</subject><subject>Electrocardiography</subject><subject>Humans</subject><subject>Invasive Electrophysiology and Pacing (EK Heist</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Section Editor</subject><subject>Stroke Volume - physiology</subject><subject>Topical Collection on Invasive Electrophysiology and Pacing</subject><subject>Ventricular Function, Left</subject><issn>1523-3782</issn><issn>1534-3170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoI0vAt8QxG6QtIFUCCZgt1z4pKW1c7GTo2-M2hZHp_NJ_kc6H0CXBNwRjcRsIKYo8xZSlmBSCpPgIDUnGeMqIwMc7HS0mCjpAZyEsMaaxxk_RgAnM8izjQzR-9WBr09auSVyVvHXWQpOU2ttam2QMuv28S2bOfdXNInmArWtsMllCX5h6vRfn6KTSqwAXhztCH9PJe_mUzl4en8v7WWoYF21K-ZzLvGBamMpgqjMuGIDlWkopGNdAGKlAW1phDjLLqMw1ybERwvC55ZaN0HW_u_Huu4PQqnUdDKxWugHXBUWFlERQyUmM0j5qvAvBQ6U2vl5rv1UEqx091dNTkZ7a01M4lq4O-918Dfav8osrBlgfCNFqFuDV0nW-iT__N_sD4KJ5IA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chatterjee, Neal A.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8290-127X</orcidid></search><sort><creationdate>20230601</creationdate><title>Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction</title><author>Chatterjee, Neal A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-24b49683a7cfc02a5473eed4a999734ae131fead2f04e955296a160c77c4bd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Cardiology</topic><topic>Death, Sudden, Cardiac - etiology</topic><topic>Death, Sudden, Cardiac - prevention & control</topic><topic>Electrocardiography</topic><topic>Humans</topic><topic>Invasive Electrophysiology and Pacing (EK Heist</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Section Editor</topic><topic>Stroke Volume - physiology</topic><topic>Topical Collection on Invasive Electrophysiology and Pacing</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Neal A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current cardiology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Neal A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction</atitle><jtitle>Current cardiology reports</jtitle><stitle>Curr Cardiol Rep</stitle><addtitle>Curr Cardiol Rep</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>25</volume><issue>6</issue><spage>525</spage><epage>534</epage><pages>525-534</pages><issn>1523-3782</issn><eissn>1534-3170</eissn><abstract>Purpose of Review
Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities in SCD prediction and prevention.
Recent Findings
There have been considerable advancements in both non-invasive and invasive measures for SCD risk prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel methodological approaches including application of machine learning, incorporation of competing risk, and use of computational modeling have underscored a future of personalized risk prediction.
Summary
SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD prediction in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37036554</pmid><doi>10.1007/s11886-023-01871-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8290-127X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-3782 |
ispartof | Current cardiology reports, 2023-06, Vol.25 (6), p.525-534 |
issn | 1523-3782 1534-3170 |
language | eng |
recordid | cdi_proquest_miscellaneous_2799172941 |
source | MEDLINE; SpringerNature Journals |
subjects | Biomarkers Cardiology Death, Sudden, Cardiac - etiology Death, Sudden, Cardiac - prevention & control Electrocardiography Humans Invasive Electrophysiology and Pacing (EK Heist Medicine Medicine & Public Health Risk Assessment Risk Factors Section Editor Stroke Volume - physiology Topical Collection on Invasive Electrophysiology and Pacing Ventricular Function, Left |
title | Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Sudden%20Cardiac%20Death:%20Looking%20Beyond%20Ejection%20Fraction&rft.jtitle=Current%20cardiology%20reports&rft.au=Chatterjee,%20Neal%20A.&rft.date=2023-06-01&rft.volume=25&rft.issue=6&rft.spage=525&rft.epage=534&rft.pages=525-534&rft.issn=1523-3782&rft.eissn=1534-3170&rft_id=info:doi/10.1007/s11886-023-01871-0&rft_dat=%3Cproquest_cross%3E2799172941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799172941&rft_id=info:pmid/37036554&rfr_iscdi=true |