New Strategies for Addressing the Diversity-Validity Dilemma With Big Data

The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied psychology 2023-09, Vol.108 (9), p.1425-1444
Hauptverfasser: Rottman, Caleb, Gardner, Cari, Liff, Joshua, Mondragon, Nathan, Zuloaga, Lindsey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1444
container_issue 9
container_start_page 1425
container_title Journal of applied psychology
container_volume 108
creator Rottman, Caleb
Gardner, Cari
Liff, Joshua
Mondragon, Nathan
Zuloaga, Lindsey
description The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Given these rapid advances, we first present a framework unifying analytical methods commonly used in these two fields to reduce group differences. We then propose and demonstrate the effectiveness of two approaches for reducing group differences while maintaining validity, which are highly applicable to numerous big data scenarios: iterative predictor removal and multipenalty optimization. Iterative predictor removal is a technique where predictors are removed from the data set if they simultaneously contribute to higher group differences and lower predictive validity. Multipenalty optimization is a new analytical technique that models the diversity-validity trade-off by adding a group difference penalty to the model optimization. Both techniques were tested on a field sample of asynchronous video interviews. Although both techniques effectively decreased group differences while maintaining predictive validity, multipenalty optimization outperformed iterative predictor removal. Strengths and weaknesses of these two analytical techniques are also discussed along with future research directions.
doi_str_mv 10.1037/apl0001084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799170420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858391848</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-e672b2c9f0aaaf737f3af3aa27cfa33f902ab53955c5d1cc3f86f4bad60777f23</originalsourceid><addsrcrecordid>eNp90d9LHDEQB_BQlHpaX_wDZMEXEbadJLub5FHPXxVpH9raxzCXTc7I7u2aZCv33zdytoIPQmBC8uHLMEPIAYXPFLj4gmMHABRk9YHMqOKqpLKutsgMgNFS5Z8dshvjQzYVV_CR7HABvGkUzMjNN_tU_EgBk116Gws3hOK0bYON0a-WRbq3xbn_Y0P0aV3eYefbfMlPne17LH77dF-c-WVxjgk_kW2HXbT7L3WP_Lq8-Dm_Lm-_X32dn96WyCVNpW0EWzCjHCCiE1w4jvkgE8Yh504Bw0XNVV2buqXGcCcbVy2wbUAI4RjfI8eb3DEMj5ONSfc-Gtt1uLLDFDUTSlEBFYNMj97Qh2EKq9ydZrKWXFFZyXeVUFJIxUBkdbJRJgwxBuv0GHyPYa0p6Oc96Nc9ZHz4Ejktetv-p_8Gn0G5ATiiHuPaYEjedDaaKQS7Ss9hOVVqpWnFav4XbmSRAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798789207</pqid></control><display><type>article</type><title>New Strategies for Addressing the Diversity-Validity Dilemma With Big Data</title><source>EBSCOhost APA PsycARTICLES</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Rottman, Caleb ; Gardner, Cari ; Liff, Joshua ; Mondragon, Nathan ; Zuloaga, Lindsey</creator><contributor>Eby, Lillian T</contributor><creatorcontrib>Rottman, Caleb ; Gardner, Cari ; Liff, Joshua ; Mondragon, Nathan ; Zuloaga, Lindsey ; Eby, Lillian T</creatorcontrib><description>The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Given these rapid advances, we first present a framework unifying analytical methods commonly used in these two fields to reduce group differences. We then propose and demonstrate the effectiveness of two approaches for reducing group differences while maintaining validity, which are highly applicable to numerous big data scenarios: iterative predictor removal and multipenalty optimization. Iterative predictor removal is a technique where predictors are removed from the data set if they simultaneously contribute to higher group differences and lower predictive validity. Multipenalty optimization is a new analytical technique that models the diversity-validity trade-off by adding a group difference penalty to the model optimization. Both techniques were tested on a field sample of asynchronous video interviews. Although both techniques effectively decreased group differences while maintaining predictive validity, multipenalty optimization outperformed iterative predictor removal. Strengths and weaknesses of these two analytical techniques are also discussed along with future research directions.</description><identifier>ISSN: 0021-9010</identifier><identifier>EISSN: 1939-1854</identifier><identifier>DOI: 10.1037/apl0001084</identifier><identifier>PMID: 37036690</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Big Data ; Business Organizations ; Diversity ; Female ; Group Differences ; Human ; Interviews ; Machine Learning ; Male ; Occupational psychology ; Optimization ; Personnel Selection ; Predictive Validity ; Validity</subject><ispartof>Journal of applied psychology, 2023-09, Vol.108 (9), p.1425-1444</ispartof><rights>2023 American Psychological Association</rights><rights>2023, American Psychological Association</rights><rights>Copyright American Psychological Association Sep 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-e672b2c9f0aaaf737f3af3aa27cfa33f902ab53955c5d1cc3f86f4bad60777f23</citedby><orcidid>0000-0002-8092-4881 ; 0000-0002-7533-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,30978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37036690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Eby, Lillian T</contributor><creatorcontrib>Rottman, Caleb</creatorcontrib><creatorcontrib>Gardner, Cari</creatorcontrib><creatorcontrib>Liff, Joshua</creatorcontrib><creatorcontrib>Mondragon, Nathan</creatorcontrib><creatorcontrib>Zuloaga, Lindsey</creatorcontrib><title>New Strategies for Addressing the Diversity-Validity Dilemma With Big Data</title><title>Journal of applied psychology</title><addtitle>J Appl Psychol</addtitle><description>The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Given these rapid advances, we first present a framework unifying analytical methods commonly used in these two fields to reduce group differences. We then propose and demonstrate the effectiveness of two approaches for reducing group differences while maintaining validity, which are highly applicable to numerous big data scenarios: iterative predictor removal and multipenalty optimization. Iterative predictor removal is a technique where predictors are removed from the data set if they simultaneously contribute to higher group differences and lower predictive validity. Multipenalty optimization is a new analytical technique that models the diversity-validity trade-off by adding a group difference penalty to the model optimization. Both techniques were tested on a field sample of asynchronous video interviews. Although both techniques effectively decreased group differences while maintaining predictive validity, multipenalty optimization outperformed iterative predictor removal. Strengths and weaknesses of these two analytical techniques are also discussed along with future research directions.</description><subject>Big Data</subject><subject>Business Organizations</subject><subject>Diversity</subject><subject>Female</subject><subject>Group Differences</subject><subject>Human</subject><subject>Interviews</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Occupational psychology</subject><subject>Optimization</subject><subject>Personnel Selection</subject><subject>Predictive Validity</subject><subject>Validity</subject><issn>0021-9010</issn><issn>1939-1854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp90d9LHDEQB_BQlHpaX_wDZMEXEbadJLub5FHPXxVpH9raxzCXTc7I7u2aZCv33zdytoIPQmBC8uHLMEPIAYXPFLj4gmMHABRk9YHMqOKqpLKutsgMgNFS5Z8dshvjQzYVV_CR7HABvGkUzMjNN_tU_EgBk116Gws3hOK0bYON0a-WRbq3xbn_Y0P0aV3eYefbfMlPne17LH77dF-c-WVxjgk_kW2HXbT7L3WP_Lq8-Dm_Lm-_X32dn96WyCVNpW0EWzCjHCCiE1w4jvkgE8Yh504Bw0XNVV2buqXGcCcbVy2wbUAI4RjfI8eb3DEMj5ONSfc-Gtt1uLLDFDUTSlEBFYNMj97Qh2EKq9ydZrKWXFFZyXeVUFJIxUBkdbJRJgwxBuv0GHyPYa0p6Oc96Nc9ZHz4Ejktetv-p_8Gn0G5ATiiHuPaYEjedDaaKQS7Ss9hOVVqpWnFav4XbmSRAw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Rottman, Caleb</creator><creator>Gardner, Cari</creator><creator>Liff, Joshua</creator><creator>Mondragon, Nathan</creator><creator>Zuloaga, Lindsey</creator><general>American Psychological Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7QJ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8092-4881</orcidid><orcidid>https://orcid.org/0000-0002-7533-2910</orcidid></search><sort><creationdate>20230901</creationdate><title>New Strategies for Addressing the Diversity-Validity Dilemma With Big Data</title><author>Rottman, Caleb ; Gardner, Cari ; Liff, Joshua ; Mondragon, Nathan ; Zuloaga, Lindsey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-e672b2c9f0aaaf737f3af3aa27cfa33f902ab53955c5d1cc3f86f4bad60777f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Business Organizations</topic><topic>Diversity</topic><topic>Female</topic><topic>Group Differences</topic><topic>Human</topic><topic>Interviews</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Occupational psychology</topic><topic>Optimization</topic><topic>Personnel Selection</topic><topic>Predictive Validity</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rottman, Caleb</creatorcontrib><creatorcontrib>Gardner, Cari</creatorcontrib><creatorcontrib>Liff, Joshua</creatorcontrib><creatorcontrib>Mondragon, Nathan</creatorcontrib><creatorcontrib>Zuloaga, Lindsey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rottman, Caleb</au><au>Gardner, Cari</au><au>Liff, Joshua</au><au>Mondragon, Nathan</au><au>Zuloaga, Lindsey</au><au>Eby, Lillian T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Strategies for Addressing the Diversity-Validity Dilemma With Big Data</atitle><jtitle>Journal of applied psychology</jtitle><addtitle>J Appl Psychol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>108</volume><issue>9</issue><spage>1425</spage><epage>1444</epage><pages>1425-1444</pages><issn>0021-9010</issn><eissn>1939-1854</eissn><abstract>The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Given these rapid advances, we first present a framework unifying analytical methods commonly used in these two fields to reduce group differences. We then propose and demonstrate the effectiveness of two approaches for reducing group differences while maintaining validity, which are highly applicable to numerous big data scenarios: iterative predictor removal and multipenalty optimization. Iterative predictor removal is a technique where predictors are removed from the data set if they simultaneously contribute to higher group differences and lower predictive validity. Multipenalty optimization is a new analytical technique that models the diversity-validity trade-off by adding a group difference penalty to the model optimization. Both techniques were tested on a field sample of asynchronous video interviews. Although both techniques effectively decreased group differences while maintaining predictive validity, multipenalty optimization outperformed iterative predictor removal. Strengths and weaknesses of these two analytical techniques are also discussed along with future research directions.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>37036690</pmid><doi>10.1037/apl0001084</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8092-4881</orcidid><orcidid>https://orcid.org/0000-0002-7533-2910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9010
ispartof Journal of applied psychology, 2023-09, Vol.108 (9), p.1425-1444
issn 0021-9010
1939-1854
language eng
recordid cdi_proquest_miscellaneous_2799170420
source EBSCOhost APA PsycARTICLES; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Big Data
Business Organizations
Diversity
Female
Group Differences
Human
Interviews
Machine Learning
Male
Occupational psychology
Optimization
Personnel Selection
Predictive Validity
Validity
title New Strategies for Addressing the Diversity-Validity Dilemma With Big Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Strategies%20for%20Addressing%20the%20Diversity-Validity%20Dilemma%20With%20Big%20Data&rft.jtitle=Journal%20of%20applied%20psychology&rft.au=Rottman,%20Caleb&rft.date=2023-09-01&rft.volume=108&rft.issue=9&rft.spage=1425&rft.epage=1444&rft.pages=1425-1444&rft.issn=0021-9010&rft.eissn=1939-1854&rft_id=info:doi/10.1037/apl0001084&rft_dat=%3Cproquest_cross%3E2858391848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798789207&rft_id=info:pmid/37036690&rfr_iscdi=true