Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide

Introduction The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/ lox P) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral metabolism 2023-07, Vol.41 (4), p.470-480
Hauptverfasser: Nakamura, Takashi, Honda, Sayako, Ito, Shinichirou, Mizoguchi, Toshihide, Yamamoto, Takehiro, Kasahara, Masataka, Kabe, Yasuaki, Matsuo, Koichi, Suematsu, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 4
container_start_page 470
container_title Journal of bone and mineral metabolism
container_volume 41
creator Nakamura, Takashi
Honda, Sayako
Ito, Shinichirou
Mizoguchi, Toshihide
Yamamoto, Takehiro
Kasahara, Masataka
Kabe, Yasuaki
Matsuo, Koichi
Suematsu, Makoto
description Introduction The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/ lox P) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. Materials and methods We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 ( Dmp1 ) gene accompanied by the Cre gene. Results We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. Conclusion 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.
doi_str_mv 10.1007/s00774-023-01425-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799170319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890365168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-f7a6f6510d569706cca8e920eff17fedcc76e0902add09d8bdbeff84fbde74f33</originalsourceid><addsrcrecordid>eNp9kEFvFSEQx4nR2NfqF_BgSLx4QYdlF5Zj86rVpIkx0TNhYWhod9kVdpu8by_PVzXx4IUJmd_8YX6EvOLwjgOo96UeqmXQCAa8bTp2eEJ2vBUd6yS0T8kONG9Zr5Q-I-el3AFw1Sn-nJwJBUJ2QuzI12tMmO0a50TnQIfoYlnznKKjV9PC2T4jvU-zu2cx0Sk6pFuJ6ZZaWnAMzI1oH4735pIuuKzR4wvyLNix4MvHekG-f_zwbf-J3Xy5_ry_vGGuld3KgrIyyI6D76RWIJ2zPeoGMASuAnrnlETQ0FjvQft-8ENt9W0YPKo2CHFB3p5ylzz_2LCsZorF4TjahPNWTKO05nVPriv65h_0bt5yqr8zTa-PKrjsK9WcKJfnUjIGs-Q42XwwHMxRuDkJN1W4-SXcHOrQ68fobZjQ_xn5bbgC4gSU2kq3mP--_Z_Yn_4ei6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890365168</pqid></control><display><type>article</type><title>Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nakamura, Takashi ; Honda, Sayako ; Ito, Shinichirou ; Mizoguchi, Toshihide ; Yamamoto, Takehiro ; Kasahara, Masataka ; Kabe, Yasuaki ; Matsuo, Koichi ; Suematsu, Makoto</creator><creatorcontrib>Nakamura, Takashi ; Honda, Sayako ; Ito, Shinichirou ; Mizoguchi, Toshihide ; Yamamoto, Takehiro ; Kasahara, Masataka ; Kabe, Yasuaki ; Matsuo, Koichi ; Suematsu, Makoto</creatorcontrib><description>Introduction The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/ lox P) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. Materials and methods We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 ( Dmp1 ) gene accompanied by the Cre gene. Results We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. Conclusion 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.</description><identifier>ISSN: 0914-8779</identifier><identifier>EISSN: 1435-5604</identifier><identifier>DOI: 10.1007/s00774-023-01425-y</identifier><identifier>PMID: 37036533</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Cre recombinase ; Dmp1 protein ; Genes ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Odontoblasts ; Original Article ; Orthopedics ; Osteoblasts ; Osteocytes ; Peptides ; Periodontal ligament ; Recombination ; Skeletal muscle ; Skeleton ; Spermatocytes ; Transgenic mice</subject><ispartof>Journal of bone and mineral metabolism, 2023-07, Vol.41 (4), p.470-480</ispartof><rights>The Japanese Society Bone and Mineral Research 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Japanese Society Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-f7a6f6510d569706cca8e920eff17fedcc76e0902add09d8bdbeff84fbde74f33</citedby><cites>FETCH-LOGICAL-c465t-f7a6f6510d569706cca8e920eff17fedcc76e0902add09d8bdbeff84fbde74f33</cites><orcidid>0000-0002-6124-061X ; 0000-0002-1490-8955 ; 0000-0003-0952-011X ; 0000-0002-7165-6336 ; 0000-0003-4974-9859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00774-023-01425-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00774-023-01425-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37036533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Honda, Sayako</creatorcontrib><creatorcontrib>Ito, Shinichirou</creatorcontrib><creatorcontrib>Mizoguchi, Toshihide</creatorcontrib><creatorcontrib>Yamamoto, Takehiro</creatorcontrib><creatorcontrib>Kasahara, Masataka</creatorcontrib><creatorcontrib>Kabe, Yasuaki</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Suematsu, Makoto</creatorcontrib><title>Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide</title><title>Journal of bone and mineral metabolism</title><addtitle>J Bone Miner Metab</addtitle><addtitle>J Bone Miner Metab</addtitle><description>Introduction The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/ lox P) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. Materials and methods We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 ( Dmp1 ) gene accompanied by the Cre gene. Results We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. Conclusion 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.</description><subject>Cre recombinase</subject><subject>Dmp1 protein</subject><subject>Genes</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Odontoblasts</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteoblasts</subject><subject>Osteocytes</subject><subject>Peptides</subject><subject>Periodontal ligament</subject><subject>Recombination</subject><subject>Skeletal muscle</subject><subject>Skeleton</subject><subject>Spermatocytes</subject><subject>Transgenic mice</subject><issn>0914-8779</issn><issn>1435-5604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFvFSEQx4nR2NfqF_BgSLx4QYdlF5Zj86rVpIkx0TNhYWhod9kVdpu8by_PVzXx4IUJmd_8YX6EvOLwjgOo96UeqmXQCAa8bTp2eEJ2vBUd6yS0T8kONG9Zr5Q-I-el3AFw1Sn-nJwJBUJ2QuzI12tMmO0a50TnQIfoYlnznKKjV9PC2T4jvU-zu2cx0Sk6pFuJ6ZZaWnAMzI1oH4735pIuuKzR4wvyLNix4MvHekG-f_zwbf-J3Xy5_ry_vGGuld3KgrIyyI6D76RWIJ2zPeoGMASuAnrnlETQ0FjvQft-8ENt9W0YPKo2CHFB3p5ylzz_2LCsZorF4TjahPNWTKO05nVPriv65h_0bt5yqr8zTa-PKrjsK9WcKJfnUjIGs-Q42XwwHMxRuDkJN1W4-SXcHOrQ68fobZjQ_xn5bbgC4gSU2kq3mP--_Z_Yn_4ei6g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Nakamura, Takashi</creator><creator>Honda, Sayako</creator><creator>Ito, Shinichirou</creator><creator>Mizoguchi, Toshihide</creator><creator>Yamamoto, Takehiro</creator><creator>Kasahara, Masataka</creator><creator>Kabe, Yasuaki</creator><creator>Matsuo, Koichi</creator><creator>Suematsu, Makoto</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6124-061X</orcidid><orcidid>https://orcid.org/0000-0002-1490-8955</orcidid><orcidid>https://orcid.org/0000-0003-0952-011X</orcidid><orcidid>https://orcid.org/0000-0002-7165-6336</orcidid><orcidid>https://orcid.org/0000-0003-4974-9859</orcidid></search><sort><creationdate>20230701</creationdate><title>Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide</title><author>Nakamura, Takashi ; Honda, Sayako ; Ito, Shinichirou ; Mizoguchi, Toshihide ; Yamamoto, Takehiro ; Kasahara, Masataka ; Kabe, Yasuaki ; Matsuo, Koichi ; Suematsu, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-f7a6f6510d569706cca8e920eff17fedcc76e0902add09d8bdbeff84fbde74f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cre recombinase</topic><topic>Dmp1 protein</topic><topic>Genes</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Odontoblasts</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteoblasts</topic><topic>Osteocytes</topic><topic>Peptides</topic><topic>Periodontal ligament</topic><topic>Recombination</topic><topic>Skeletal muscle</topic><topic>Skeleton</topic><topic>Spermatocytes</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Honda, Sayako</creatorcontrib><creatorcontrib>Ito, Shinichirou</creatorcontrib><creatorcontrib>Mizoguchi, Toshihide</creatorcontrib><creatorcontrib>Yamamoto, Takehiro</creatorcontrib><creatorcontrib>Kasahara, Masataka</creatorcontrib><creatorcontrib>Kabe, Yasuaki</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Suematsu, Makoto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Takashi</au><au>Honda, Sayako</au><au>Ito, Shinichirou</au><au>Mizoguchi, Toshihide</au><au>Yamamoto, Takehiro</au><au>Kasahara, Masataka</au><au>Kabe, Yasuaki</au><au>Matsuo, Koichi</au><au>Suematsu, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide</atitle><jtitle>Journal of bone and mineral metabolism</jtitle><stitle>J Bone Miner Metab</stitle><addtitle>J Bone Miner Metab</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>470</spage><epage>480</epage><pages>470-480</pages><issn>0914-8779</issn><eissn>1435-5604</eissn><abstract>Introduction The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/ lox P) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. Materials and methods We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 ( Dmp1 ) gene accompanied by the Cre gene. Results We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. Conclusion 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>37036533</pmid><doi>10.1007/s00774-023-01425-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6124-061X</orcidid><orcidid>https://orcid.org/0000-0002-1490-8955</orcidid><orcidid>https://orcid.org/0000-0003-0952-011X</orcidid><orcidid>https://orcid.org/0000-0002-7165-6336</orcidid><orcidid>https://orcid.org/0000-0003-4974-9859</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0914-8779
ispartof Journal of bone and mineral metabolism, 2023-07, Vol.41 (4), p.470-480
issn 0914-8779
1435-5604
language eng
recordid cdi_proquest_miscellaneous_2799170319
source SpringerLink Journals - AutoHoldings
subjects Cre recombinase
Dmp1 protein
Genes
Medicine
Medicine & Public Health
Metabolic Diseases
Odontoblasts
Original Article
Orthopedics
Osteoblasts
Osteocytes
Peptides
Periodontal ligament
Recombination
Skeletal muscle
Skeleton
Spermatocytes
Transgenic mice
title Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20bicistronic%20Dmp1-Cre%20knock-in%20mice%20using%20a%20self-cleaving%202A%20peptide&rft.jtitle=Journal%20of%20bone%20and%20mineral%20metabolism&rft.au=Nakamura,%20Takashi&rft.date=2023-07-01&rft.volume=41&rft.issue=4&rft.spage=470&rft.epage=480&rft.pages=470-480&rft.issn=0914-8779&rft.eissn=1435-5604&rft_id=info:doi/10.1007/s00774-023-01425-y&rft_dat=%3Cproquest_cross%3E2890365168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890365168&rft_id=info:pmid/37036533&rfr_iscdi=true