Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness
Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-D...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2005-06, Vol.339 (2), p.272-292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2 |
container_start_page | 272 |
container_title | Theoretical computer science |
container_volume | 339 |
creator | Bazgan, Cristina Escoffier, Bruno Paschos, Vangelis Th |
description | Several problems are known to be
APX-,
DAPX-,
PTAS-, or
Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be
PTAS-complete and no problem at all is known to be
Poly-APX-complete. On the other hand,
DPTAS- and
Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural
Poly-APX- and
Poly-DAPX-complete problems under the well known
PTAS-reduction and under the
DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos,
Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with
PTAS- and
DPTAS-completeness. We introduce approximation preserving reductions, called
FT and
DFT, respectively, and prove that, under these new reductions, natural problems are
PTAS-complete, or
DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of
NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both
FT- and
DFT-reductions. Finally, we show that
MIN COLORING is
DAPX-complete under
DPTAS-reductions. This is the first
DAPX-complete problem that is not simultaneously
APX-complete. |
doi_str_mv | 10.1016/j.tcs.2005.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27991411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439750500126X</els_id><sourcerecordid>27991411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoNs0H6A3XxKag92RZVtWe1q2_wKBLCSB3MSsNAItXnurcULy7aN0A-2pc5kRvPdG8xPio4RKguw-b6vZcVUDtBWoCkC_EQvZa1PWtWneigUoaEpldPtOvGfeQq5WdwsRVtNuP9BMIzEXcSx4xtFj8kVuhY8hUKJxjjgUuN-n6THucI7TWLgBmYm_FOtpeCo_fTtfru_KP6Y8r2-W16X7J_mDOAo4MJ289mNx--P7zepXeXn182K1vCxd0-m57DahDr2WrfO6hjY_NyYo53GDBhD7pqcaG9U3EIwP3nuzMd60GUCDoAKoY3F2yM1f_X1PPNtdZEfDgCNN92xrbYxspMxCeRC6NDEnCnaf8mnpyUqwL0Tt1mai9oWoBWUz0ew5fQ1HdjiEhKOL_NfY9WB6rbLu60FH-dKHSMmyizQ68jGRm62f4n-2PAN3b4wI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27991411</pqid></control><display><type>article</type><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</creator><creatorcontrib>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</creatorcontrib><description>Several problems are known to be
APX-,
DAPX-,
PTAS-, or
Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be
PTAS-complete and no problem at all is known to be
Poly-APX-complete. On the other hand,
DPTAS- and
Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural
Poly-APX- and
Poly-DAPX-complete problems under the well known
PTAS-reduction and under the
DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos,
Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with
PTAS- and
DPTAS-completeness. We introduce approximation preserving reductions, called
FT and
DFT, respectively, and prove that, under these new reductions, natural problems are
PTAS-complete, or
DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of
NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both
FT- and
DFT-reductions. Finally, we show that
MIN COLORING is
DAPX-complete under
DPTAS-reductions. This is the first
DAPX-complete problem that is not simultaneously
APX-complete.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2005.03.007</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation algorithm ; Approximation schema ; Artificial intelligence ; Calculus of variations and optimal control ; Combinatorial optimization ; Completeness ; Complexity ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematical analysis ; Mathematics ; Reduction ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2005-06, Vol.339 (2), p.272-292</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</citedby><cites>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2005.03.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16809873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bazgan, Cristina</creatorcontrib><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Paschos, Vangelis Th</creatorcontrib><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><title>Theoretical computer science</title><description>Several problems are known to be
APX-,
DAPX-,
PTAS-, or
Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be
PTAS-complete and no problem at all is known to be
Poly-APX-complete. On the other hand,
DPTAS- and
Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural
Poly-APX- and
Poly-DAPX-complete problems under the well known
PTAS-reduction and under the
DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos,
Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with
PTAS- and
DPTAS-completeness. We introduce approximation preserving reductions, called
FT and
DFT, respectively, and prove that, under these new reductions, natural problems are
PTAS-complete, or
DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of
NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both
FT- and
DFT-reductions. Finally, we show that
MIN COLORING is
DAPX-complete under
DPTAS-reductions. This is the first
DAPX-complete problem that is not simultaneously
APX-complete.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation algorithm</subject><subject>Approximation schema</subject><subject>Artificial intelligence</subject><subject>Calculus of variations and optimal control</subject><subject>Combinatorial optimization</subject><subject>Completeness</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Reduction</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoNs0H6A3XxKag92RZVtWe1q2_wKBLCSB3MSsNAItXnurcULy7aN0A-2pc5kRvPdG8xPio4RKguw-b6vZcVUDtBWoCkC_EQvZa1PWtWneigUoaEpldPtOvGfeQq5WdwsRVtNuP9BMIzEXcSx4xtFj8kVuhY8hUKJxjjgUuN-n6THucI7TWLgBmYm_FOtpeCo_fTtfru_KP6Y8r2-W16X7J_mDOAo4MJ289mNx--P7zepXeXn182K1vCxd0-m57DahDr2WrfO6hjY_NyYo53GDBhD7pqcaG9U3EIwP3nuzMd60GUCDoAKoY3F2yM1f_X1PPNtdZEfDgCNN92xrbYxspMxCeRC6NDEnCnaf8mnpyUqwL0Tt1mai9oWoBWUz0ew5fQ1HdjiEhKOL_NfY9WB6rbLu60FH-dKHSMmyizQ68jGRm62f4n-2PAN3b4wI</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Bazgan, Cristina</creator><creator>Escoffier, Bruno</creator><creator>Paschos, Vangelis Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><author>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation algorithm</topic><topic>Approximation schema</topic><topic>Artificial intelligence</topic><topic>Calculus of variations and optimal control</topic><topic>Combinatorial optimization</topic><topic>Completeness</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Reduction</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazgan, Cristina</creatorcontrib><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Paschos, Vangelis Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazgan, Cristina</au><au>Escoffier, Bruno</au><au>Paschos, Vangelis Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</atitle><jtitle>Theoretical computer science</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>339</volume><issue>2</issue><spage>272</spage><epage>292</epage><pages>272-292</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Several problems are known to be
APX-,
DAPX-,
PTAS-, or
Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be
PTAS-complete and no problem at all is known to be
Poly-APX-complete. On the other hand,
DPTAS- and
Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural
Poly-APX- and
Poly-DAPX-complete problems under the well known
PTAS-reduction and under the
DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos,
Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with
PTAS- and
DPTAS-completeness. We introduce approximation preserving reductions, called
FT and
DFT, respectively, and prove that, under these new reductions, natural problems are
PTAS-complete, or
DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of
NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both
FT- and
DFT-reductions. Finally, we show that
MIN COLORING is
DAPX-complete under
DPTAS-reductions. This is the first
DAPX-complete problem that is not simultaneously
APX-complete.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2005.03.007</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2005-06, Vol.339 (2), p.272-292 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_27991411 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation algorithm Approximation schema Artificial intelligence Calculus of variations and optimal control Combinatorial optimization Completeness Complexity Computer science control theory systems Exact sciences and technology Learning and adaptive systems Mathematical analysis Mathematics Reduction Sciences and techniques of general use Theoretical computing |
title | Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20in%20standard%20and%20differential%20approximation%20classes:%20Poly-(D)APX-%20and%20(D)PTAS-completeness&rft.jtitle=Theoretical%20computer%20science&rft.au=Bazgan,%20Cristina&rft.date=2005-06-01&rft.volume=339&rft.issue=2&rft.spage=272&rft.epage=292&rft.pages=272-292&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2005.03.007&rft_dat=%3Cproquest_cross%3E27991411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27991411&rft_id=info:pmid/&rft_els_id=S030439750500126X&rfr_iscdi=true |