Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness

Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2005-06, Vol.339 (2), p.272-292
Hauptverfasser: Bazgan, Cristina, Escoffier, Bruno, Paschos, Vangelis Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 272
container_title Theoretical computer science
container_volume 339
creator Bazgan, Cristina
Escoffier, Bruno
Paschos, Vangelis Th
description Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete, or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both FT- and DFT-reductions. Finally, we show that MIN COLORING is DAPX-complete under DPTAS-reductions. This is the first DAPX-complete problem that is not simultaneously APX-complete.
doi_str_mv 10.1016/j.tcs.2005.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27991411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439750500126X</els_id><sourcerecordid>27991411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoNs0H6A3XxKag92RZVtWe1q2_wKBLCSB3MSsNAItXnurcULy7aN0A-2pc5kRvPdG8xPio4RKguw-b6vZcVUDtBWoCkC_EQvZa1PWtWneigUoaEpldPtOvGfeQq5WdwsRVtNuP9BMIzEXcSx4xtFj8kVuhY8hUKJxjjgUuN-n6THucI7TWLgBmYm_FOtpeCo_fTtfru_KP6Y8r2-W16X7J_mDOAo4MJ289mNx--P7zepXeXn182K1vCxd0-m57DahDr2WrfO6hjY_NyYo53GDBhD7pqcaG9U3EIwP3nuzMd60GUCDoAKoY3F2yM1f_X1PPNtdZEfDgCNN92xrbYxspMxCeRC6NDEnCnaf8mnpyUqwL0Tt1mai9oWoBWUz0ew5fQ1HdjiEhKOL_NfY9WB6rbLu60FH-dKHSMmyizQ68jGRm62f4n-2PAN3b4wI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27991411</pqid></control><display><type>article</type><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</creator><creatorcontrib>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</creatorcontrib><description>Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete, or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both FT- and DFT-reductions. Finally, we show that MIN COLORING is DAPX-complete under DPTAS-reductions. This is the first DAPX-complete problem that is not simultaneously APX-complete.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2005.03.007</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation algorithm ; Approximation schema ; Artificial intelligence ; Calculus of variations and optimal control ; Combinatorial optimization ; Completeness ; Complexity ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematical analysis ; Mathematics ; Reduction ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2005-06, Vol.339 (2), p.272-292</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</citedby><cites>FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2005.03.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16809873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bazgan, Cristina</creatorcontrib><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Paschos, Vangelis Th</creatorcontrib><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><title>Theoretical computer science</title><description>Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete, or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both FT- and DFT-reductions. Finally, we show that MIN COLORING is DAPX-complete under DPTAS-reductions. This is the first DAPX-complete problem that is not simultaneously APX-complete.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation algorithm</subject><subject>Approximation schema</subject><subject>Artificial intelligence</subject><subject>Calculus of variations and optimal control</subject><subject>Combinatorial optimization</subject><subject>Completeness</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Reduction</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoNs0H6A3XxKag92RZVtWe1q2_wKBLCSB3MSsNAItXnurcULy7aN0A-2pc5kRvPdG8xPio4RKguw-b6vZcVUDtBWoCkC_EQvZa1PWtWneigUoaEpldPtOvGfeQq5WdwsRVtNuP9BMIzEXcSx4xtFj8kVuhY8hUKJxjjgUuN-n6THucI7TWLgBmYm_FOtpeCo_fTtfru_KP6Y8r2-W16X7J_mDOAo4MJ289mNx--P7zepXeXn182K1vCxd0-m57DahDr2WrfO6hjY_NyYo53GDBhD7pqcaG9U3EIwP3nuzMd60GUCDoAKoY3F2yM1f_X1PPNtdZEfDgCNN92xrbYxspMxCeRC6NDEnCnaf8mnpyUqwL0Tt1mai9oWoBWUz0ew5fQ1HdjiEhKOL_NfY9WB6rbLu60FH-dKHSMmyizQ68jGRm62f4n-2PAN3b4wI</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Bazgan, Cristina</creator><creator>Escoffier, Bruno</creator><creator>Paschos, Vangelis Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</title><author>Bazgan, Cristina ; Escoffier, Bruno ; Paschos, Vangelis Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-6bf2f8715cd72056bfb9f3cdaba90aa848e2a43840f9dfddd9b9d950164a03f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation algorithm</topic><topic>Approximation schema</topic><topic>Artificial intelligence</topic><topic>Calculus of variations and optimal control</topic><topic>Combinatorial optimization</topic><topic>Completeness</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Reduction</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazgan, Cristina</creatorcontrib><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Paschos, Vangelis Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazgan, Cristina</au><au>Escoffier, Bruno</au><au>Paschos, Vangelis Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness</atitle><jtitle>Theoretical computer science</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>339</volume><issue>2</issue><spage>272</spage><epage>292</epage><pages>272-292</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete, or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of NPO-intermediate problems under Turing-reductions is a sufficient condition for the existence of intermediate problems under both FT- and DFT-reductions. Finally, we show that MIN COLORING is DAPX-complete under DPTAS-reductions. This is the first DAPX-complete problem that is not simultaneously APX-complete.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2005.03.007</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2005-06, Vol.339 (2), p.272-292
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27991411
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation algorithm
Approximation schema
Artificial intelligence
Calculus of variations and optimal control
Combinatorial optimization
Completeness
Complexity
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Mathematical analysis
Mathematics
Reduction
Sciences and techniques of general use
Theoretical computing
title Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20in%20standard%20and%20differential%20approximation%20classes:%20Poly-(D)APX-%20and%20(D)PTAS-completeness&rft.jtitle=Theoretical%20computer%20science&rft.au=Bazgan,%20Cristina&rft.date=2005-06-01&rft.volume=339&rft.issue=2&rft.spage=272&rft.epage=292&rft.pages=272-292&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2005.03.007&rft_dat=%3Cproquest_cross%3E27991411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27991411&rft_id=info:pmid/&rft_els_id=S030439750500126X&rfr_iscdi=true