Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance
Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidenc...
Gespeichert in:
Veröffentlicht in: | World neurosurgery 2023-07, Vol.175, p.e614-e635 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e635 |
---|---|
container_issue | |
container_start_page | e614 |
container_title | World neurosurgery |
container_volume | 175 |
creator | Puustinen, Sami Vrzáková, Hana Hyttinen, Joni Rauramaa, Tuomas Fält, Pauli Hauta-Kasari, Markku Bednarik, Roman Koivisto, Timo Rantala, Susanna von und zu Fraunberg, Mikael Jääskeläinen, Juha E. Elomaa, Antti-Pekka |
description | Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared.
We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods.
The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery.
In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems. |
doi_str_mv | 10.1016/j.wneu.2023.03.149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875023004734</els_id><sourcerecordid>2798714164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</originalsourceid><addsrcrecordid>eNp9kM1O4zAURi00iKLCC7AYZTmbhOufxK40myliAKkIJGCJLMe-6bhqko7ddNQdD8ET8iS4KsOSu_D14nyfdA8hZxQKCrQ6XxT_OhwKBowXwAsqJgfkmCqpciWrybfPfwkjchrjAtJwKpTkR2TEJXAQih-T5-vtCkNcoV0Hs8xuWjP33TzzXTYNJr2PQ9uH7GEIcwzbt5fXy4132FnM-ia7NfaP7zCboQldSuVTE9Fl9xiaPrQmUSfksDHLiKcfe0yefl8-Xlzns7urm4tfs9wKgHXOQDBnjYGSs9JQbijKspYCXV2WTkDdVE41VpoGKsmUU0zZZpJuUK6sgSIfkx_73lXo_w4Y17r10eJyaTrsh6iZnChJBa1EQtketaGPMWCjV8G3Jmw1Bb0zqxd6Z1bvzGrgOplNoe8f_UPdovuM_PeYgJ97ANOVG49BR-t3npwPSa12vf-q_x34bIs7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714164</pqid></control><display><type>article</type><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</creator><creatorcontrib>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</creatorcontrib><description>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared.
We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods.
The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery.
In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2023.03.149</identifier><identifier>PMID: 37030483</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophotonics ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - surgery ; Diagnostic Imaging ; Glioma - diagnostic imaging ; Glioma - surgery ; Humans ; Hyperspectral Imaging ; Machine Learning ; Microsurgery ; Neurosurgery ; Tissue classification</subject><ispartof>World neurosurgery, 2023-07, Vol.175, p.e614-e635</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</citedby><cites>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</cites><orcidid>0000-0003-4520-5598 ; 0000-0002-2250-327X ; 0000-0003-1539-7445 ; 0000-0002-5481-0004 ; 0000-0003-1726-3520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1878875023004734$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puustinen, Sami</creatorcontrib><creatorcontrib>Vrzáková, Hana</creatorcontrib><creatorcontrib>Hyttinen, Joni</creatorcontrib><creatorcontrib>Rauramaa, Tuomas</creatorcontrib><creatorcontrib>Fält, Pauli</creatorcontrib><creatorcontrib>Hauta-Kasari, Markku</creatorcontrib><creatorcontrib>Bednarik, Roman</creatorcontrib><creatorcontrib>Koivisto, Timo</creatorcontrib><creatorcontrib>Rantala, Susanna</creatorcontrib><creatorcontrib>von und zu Fraunberg, Mikael</creatorcontrib><creatorcontrib>Jääskeläinen, Juha E.</creatorcontrib><creatorcontrib>Elomaa, Antti-Pekka</creatorcontrib><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared.
We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods.
The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery.
In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</description><subject>Biophotonics</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - surgery</subject><subject>Diagnostic Imaging</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - surgery</subject><subject>Humans</subject><subject>Hyperspectral Imaging</subject><subject>Machine Learning</subject><subject>Microsurgery</subject><subject>Neurosurgery</subject><subject>Tissue classification</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1O4zAURi00iKLCC7AYZTmbhOufxK40myliAKkIJGCJLMe-6bhqko7ddNQdD8ET8iS4KsOSu_D14nyfdA8hZxQKCrQ6XxT_OhwKBowXwAsqJgfkmCqpciWrybfPfwkjchrjAtJwKpTkR2TEJXAQih-T5-vtCkNcoV0Hs8xuWjP33TzzXTYNJr2PQ9uH7GEIcwzbt5fXy4132FnM-ia7NfaP7zCboQldSuVTE9Fl9xiaPrQmUSfksDHLiKcfe0yefl8-Xlzns7urm4tfs9wKgHXOQDBnjYGSs9JQbijKspYCXV2WTkDdVE41VpoGKsmUU0zZZpJuUK6sgSIfkx_73lXo_w4Y17r10eJyaTrsh6iZnChJBa1EQtketaGPMWCjV8G3Jmw1Bb0zqxd6Z1bvzGrgOplNoe8f_UPdovuM_PeYgJ97ANOVG49BR-t3npwPSa12vf-q_x34bIs7</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Puustinen, Sami</creator><creator>Vrzáková, Hana</creator><creator>Hyttinen, Joni</creator><creator>Rauramaa, Tuomas</creator><creator>Fält, Pauli</creator><creator>Hauta-Kasari, Markku</creator><creator>Bednarik, Roman</creator><creator>Koivisto, Timo</creator><creator>Rantala, Susanna</creator><creator>von und zu Fraunberg, Mikael</creator><creator>Jääskeläinen, Juha E.</creator><creator>Elomaa, Antti-Pekka</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4520-5598</orcidid><orcidid>https://orcid.org/0000-0002-2250-327X</orcidid><orcidid>https://orcid.org/0000-0003-1539-7445</orcidid><orcidid>https://orcid.org/0000-0002-5481-0004</orcidid><orcidid>https://orcid.org/0000-0003-1726-3520</orcidid></search><sort><creationdate>202307</creationdate><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><author>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biophotonics</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - surgery</topic><topic>Diagnostic Imaging</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - surgery</topic><topic>Humans</topic><topic>Hyperspectral Imaging</topic><topic>Machine Learning</topic><topic>Microsurgery</topic><topic>Neurosurgery</topic><topic>Tissue classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puustinen, Sami</creatorcontrib><creatorcontrib>Vrzáková, Hana</creatorcontrib><creatorcontrib>Hyttinen, Joni</creatorcontrib><creatorcontrib>Rauramaa, Tuomas</creatorcontrib><creatorcontrib>Fält, Pauli</creatorcontrib><creatorcontrib>Hauta-Kasari, Markku</creatorcontrib><creatorcontrib>Bednarik, Roman</creatorcontrib><creatorcontrib>Koivisto, Timo</creatorcontrib><creatorcontrib>Rantala, Susanna</creatorcontrib><creatorcontrib>von und zu Fraunberg, Mikael</creatorcontrib><creatorcontrib>Jääskeläinen, Juha E.</creatorcontrib><creatorcontrib>Elomaa, Antti-Pekka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puustinen, Sami</au><au>Vrzáková, Hana</au><au>Hyttinen, Joni</au><au>Rauramaa, Tuomas</au><au>Fält, Pauli</au><au>Hauta-Kasari, Markku</au><au>Bednarik, Roman</au><au>Koivisto, Timo</au><au>Rantala, Susanna</au><au>von und zu Fraunberg, Mikael</au><au>Jääskeläinen, Juha E.</au><au>Elomaa, Antti-Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2023-07</date><risdate>2023</risdate><volume>175</volume><spage>e614</spage><epage>e635</epage><pages>e614-e635</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared.
We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods.
The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery.
In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37030483</pmid><doi>10.1016/j.wneu.2023.03.149</doi><orcidid>https://orcid.org/0000-0003-4520-5598</orcidid><orcidid>https://orcid.org/0000-0002-2250-327X</orcidid><orcidid>https://orcid.org/0000-0003-1539-7445</orcidid><orcidid>https://orcid.org/0000-0002-5481-0004</orcidid><orcidid>https://orcid.org/0000-0003-1726-3520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-8750 |
ispartof | World neurosurgery, 2023-07, Vol.175, p.e614-e635 |
issn | 1878-8750 1878-8769 1878-8769 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798714164 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biophotonics Brain Neoplasms - diagnostic imaging Brain Neoplasms - surgery Diagnostic Imaging Glioma - diagnostic imaging Glioma - surgery Humans Hyperspectral Imaging Machine Learning Microsurgery Neurosurgery Tissue classification |
title | Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Imaging%20in%20Brain%20Tumor%20Surgery%E2%80%94Evidence%20of%20Machine%20Learning-Based%20Performance&rft.jtitle=World%20neurosurgery&rft.au=Puustinen,%20Sami&rft.date=2023-07&rft.volume=175&rft.spage=e614&rft.epage=e635&rft.pages=e614-e635&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2023.03.149&rft_dat=%3Cproquest_cross%3E2798714164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798714164&rft_id=info:pmid/37030483&rft_els_id=S1878875023004734&rfr_iscdi=true |