Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance

Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World neurosurgery 2023-07, Vol.175, p.e614-e635
Hauptverfasser: Puustinen, Sami, Vrzáková, Hana, Hyttinen, Joni, Rauramaa, Tuomas, Fält, Pauli, Hauta-Kasari, Markku, Bednarik, Roman, Koivisto, Timo, Rantala, Susanna, von und zu Fraunberg, Mikael, Jääskeläinen, Juha E., Elomaa, Antti-Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e635
container_issue
container_start_page e614
container_title World neurosurgery
container_volume 175
creator Puustinen, Sami
Vrzáková, Hana
Hyttinen, Joni
Rauramaa, Tuomas
Fält, Pauli
Hauta-Kasari, Markku
Bednarik, Roman
Koivisto, Timo
Rantala, Susanna
von und zu Fraunberg, Mikael
Jääskeläinen, Juha E.
Elomaa, Antti-Pekka
description Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.
doi_str_mv 10.1016/j.wneu.2023.03.149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875023004734</els_id><sourcerecordid>2798714164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</originalsourceid><addsrcrecordid>eNp9kM1O4zAURi00iKLCC7AYZTmbhOufxK40myliAKkIJGCJLMe-6bhqko7ddNQdD8ET8iS4KsOSu_D14nyfdA8hZxQKCrQ6XxT_OhwKBowXwAsqJgfkmCqpciWrybfPfwkjchrjAtJwKpTkR2TEJXAQih-T5-vtCkNcoV0Hs8xuWjP33TzzXTYNJr2PQ9uH7GEIcwzbt5fXy4132FnM-ia7NfaP7zCboQldSuVTE9Fl9xiaPrQmUSfksDHLiKcfe0yefl8-Xlzns7urm4tfs9wKgHXOQDBnjYGSs9JQbijKspYCXV2WTkDdVE41VpoGKsmUU0zZZpJuUK6sgSIfkx_73lXo_w4Y17r10eJyaTrsh6iZnChJBa1EQtketaGPMWCjV8G3Jmw1Bb0zqxd6Z1bvzGrgOplNoe8f_UPdovuM_PeYgJ97ANOVG49BR-t3npwPSa12vf-q_x34bIs7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714164</pqid></control><display><type>article</type><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</creator><creatorcontrib>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</creatorcontrib><description>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2023.03.149</identifier><identifier>PMID: 37030483</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophotonics ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - surgery ; Diagnostic Imaging ; Glioma - diagnostic imaging ; Glioma - surgery ; Humans ; Hyperspectral Imaging ; Machine Learning ; Microsurgery ; Neurosurgery ; Tissue classification</subject><ispartof>World neurosurgery, 2023-07, Vol.175, p.e614-e635</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</citedby><cites>FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</cites><orcidid>0000-0003-4520-5598 ; 0000-0002-2250-327X ; 0000-0003-1539-7445 ; 0000-0002-5481-0004 ; 0000-0003-1726-3520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1878875023004734$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puustinen, Sami</creatorcontrib><creatorcontrib>Vrzáková, Hana</creatorcontrib><creatorcontrib>Hyttinen, Joni</creatorcontrib><creatorcontrib>Rauramaa, Tuomas</creatorcontrib><creatorcontrib>Fält, Pauli</creatorcontrib><creatorcontrib>Hauta-Kasari, Markku</creatorcontrib><creatorcontrib>Bednarik, Roman</creatorcontrib><creatorcontrib>Koivisto, Timo</creatorcontrib><creatorcontrib>Rantala, Susanna</creatorcontrib><creatorcontrib>von und zu Fraunberg, Mikael</creatorcontrib><creatorcontrib>Jääskeläinen, Juha E.</creatorcontrib><creatorcontrib>Elomaa, Antti-Pekka</creatorcontrib><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</description><subject>Biophotonics</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - surgery</subject><subject>Diagnostic Imaging</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - surgery</subject><subject>Humans</subject><subject>Hyperspectral Imaging</subject><subject>Machine Learning</subject><subject>Microsurgery</subject><subject>Neurosurgery</subject><subject>Tissue classification</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1O4zAURi00iKLCC7AYZTmbhOufxK40myliAKkIJGCJLMe-6bhqko7ddNQdD8ET8iS4KsOSu_D14nyfdA8hZxQKCrQ6XxT_OhwKBowXwAsqJgfkmCqpciWrybfPfwkjchrjAtJwKpTkR2TEJXAQih-T5-vtCkNcoV0Hs8xuWjP33TzzXTYNJr2PQ9uH7GEIcwzbt5fXy4132FnM-ia7NfaP7zCboQldSuVTE9Fl9xiaPrQmUSfksDHLiKcfe0yefl8-Xlzns7urm4tfs9wKgHXOQDBnjYGSs9JQbijKspYCXV2WTkDdVE41VpoGKsmUU0zZZpJuUK6sgSIfkx_73lXo_w4Y17r10eJyaTrsh6iZnChJBa1EQtketaGPMWCjV8G3Jmw1Bb0zqxd6Z1bvzGrgOplNoe8f_UPdovuM_PeYgJ97ANOVG49BR-t3npwPSa12vf-q_x34bIs7</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Puustinen, Sami</creator><creator>Vrzáková, Hana</creator><creator>Hyttinen, Joni</creator><creator>Rauramaa, Tuomas</creator><creator>Fält, Pauli</creator><creator>Hauta-Kasari, Markku</creator><creator>Bednarik, Roman</creator><creator>Koivisto, Timo</creator><creator>Rantala, Susanna</creator><creator>von und zu Fraunberg, Mikael</creator><creator>Jääskeläinen, Juha E.</creator><creator>Elomaa, Antti-Pekka</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4520-5598</orcidid><orcidid>https://orcid.org/0000-0002-2250-327X</orcidid><orcidid>https://orcid.org/0000-0003-1539-7445</orcidid><orcidid>https://orcid.org/0000-0002-5481-0004</orcidid><orcidid>https://orcid.org/0000-0003-1726-3520</orcidid></search><sort><creationdate>202307</creationdate><title>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</title><author>Puustinen, Sami ; Vrzáková, Hana ; Hyttinen, Joni ; Rauramaa, Tuomas ; Fält, Pauli ; Hauta-Kasari, Markku ; Bednarik, Roman ; Koivisto, Timo ; Rantala, Susanna ; von und zu Fraunberg, Mikael ; Jääskeläinen, Juha E. ; Elomaa, Antti-Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-2042dcaa05325a13a1e75b74edb55d40bf6d8fc7af06728d828cf97038d5b01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biophotonics</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - surgery</topic><topic>Diagnostic Imaging</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - surgery</topic><topic>Humans</topic><topic>Hyperspectral Imaging</topic><topic>Machine Learning</topic><topic>Microsurgery</topic><topic>Neurosurgery</topic><topic>Tissue classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puustinen, Sami</creatorcontrib><creatorcontrib>Vrzáková, Hana</creatorcontrib><creatorcontrib>Hyttinen, Joni</creatorcontrib><creatorcontrib>Rauramaa, Tuomas</creatorcontrib><creatorcontrib>Fält, Pauli</creatorcontrib><creatorcontrib>Hauta-Kasari, Markku</creatorcontrib><creatorcontrib>Bednarik, Roman</creatorcontrib><creatorcontrib>Koivisto, Timo</creatorcontrib><creatorcontrib>Rantala, Susanna</creatorcontrib><creatorcontrib>von und zu Fraunberg, Mikael</creatorcontrib><creatorcontrib>Jääskeläinen, Juha E.</creatorcontrib><creatorcontrib>Elomaa, Antti-Pekka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puustinen, Sami</au><au>Vrzáková, Hana</au><au>Hyttinen, Joni</au><au>Rauramaa, Tuomas</au><au>Fält, Pauli</au><au>Hauta-Kasari, Markku</au><au>Bednarik, Roman</au><au>Koivisto, Timo</au><au>Rantala, Susanna</au><au>von und zu Fraunberg, Mikael</au><au>Jääskeläinen, Juha E.</au><au>Elomaa, Antti-Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2023-07</date><risdate>2023</risdate><volume>175</volume><spage>e614</spage><epage>e635</epage><pages>e614-e635</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37030483</pmid><doi>10.1016/j.wneu.2023.03.149</doi><orcidid>https://orcid.org/0000-0003-4520-5598</orcidid><orcidid>https://orcid.org/0000-0002-2250-327X</orcidid><orcidid>https://orcid.org/0000-0003-1539-7445</orcidid><orcidid>https://orcid.org/0000-0002-5481-0004</orcidid><orcidid>https://orcid.org/0000-0003-1726-3520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-8750
ispartof World neurosurgery, 2023-07, Vol.175, p.e614-e635
issn 1878-8750
1878-8769
1878-8769
language eng
recordid cdi_proquest_miscellaneous_2798714164
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biophotonics
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - surgery
Diagnostic Imaging
Glioma - diagnostic imaging
Glioma - surgery
Humans
Hyperspectral Imaging
Machine Learning
Microsurgery
Neurosurgery
Tissue classification
title Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Imaging%20in%20Brain%20Tumor%20Surgery%E2%80%94Evidence%20of%20Machine%20Learning-Based%20Performance&rft.jtitle=World%20neurosurgery&rft.au=Puustinen,%20Sami&rft.date=2023-07&rft.volume=175&rft.spage=e614&rft.epage=e635&rft.pages=e614-e635&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2023.03.149&rft_dat=%3Cproquest_cross%3E2798714164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798714164&rft_id=info:pmid/37030483&rft_els_id=S1878875023004734&rfr_iscdi=true