MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices
Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and requ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2024-07, Vol.30 (7), p.4271-4284 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4284 |
---|---|
container_issue | 7 |
container_start_page | 4271 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 30 |
creator | Yang, Sipeng Zhao, Yunlu Luo, Yuzhe Wang, He Sun, Hongyu Li, Chen Cai, Binghuang Jin, Xiaogang |
description | Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability. |
doi_str_mv | 10.1109/TVCG.2023.3259141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10076842</ieee_id><sourcerecordid>2798714100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AEEk4MVL6n5lN-tNqq1CW8FWr8smmUhqPupuo_jv3dAq4mkG5nlfhgehU4KHhGB1tXwZTYYUUzZkNFKEkz3UJ4qTEEdY7PsdSxlSQUUPHTm3wphwHqtD1GMSMyyF6KP5bL5YXAdzaK0pg0W7ButMtS6L-jUYW1PBZ2PfgryxwROYMlwWFfitzsB2RFMHsyYpSghu4aNIwR2jg9yUDk52c4Cex3fL0X04fZw8jG6mYcow3YQsznICsWCCcJarSAiVpKkBpvJI8IzKJFYqMjxmseRMRkaJnAuScZ6mkCeEDdDltndtm_cW3EZXhUuhLE0NTes0lSqWXgjGHr34h66a1tb-O-0dMP-PZMJTZEultnHOQq7XtqiM_dIE60627mTrTrbeyfaZ811zm1SQ_SZ-7HrgbAsUAPCn0B9jTtk3L8yAtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073302736</pqid></control><display><type>article</type><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</creator><creatorcontrib>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</creatorcontrib><description>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2023.3259141</identifier><identifier>PMID: 37030766</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Deep learning ; Electronic devices ; Hardware ; High resolution ; Image quality ; Image reconstruction ; Image resolution ; Neural networks ; neural supersampling ; Real time ; real-time rendering ; Real-time systems ; Rendering ; Rendering (computer graphics) ; Smartphones ; Stability ; Videos ; Visual perception</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-07, Vol.30 (7), p.4271-4284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</cites><orcidid>0000-0001-7339-2920 ; 0000-0002-2281-5679 ; 0009-0004-6210-3598 ; 0000-0002-8141-2335 ; 0000-0002-0348-0690 ; 0009-0002-4118-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10076842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10076842$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sipeng</creatorcontrib><creatorcontrib>Zhao, Yunlu</creatorcontrib><creatorcontrib>Luo, Yuzhe</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Jin, Xiaogang</creatorcontrib><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Hardware</subject><subject>High resolution</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Neural networks</subject><subject>neural supersampling</subject><subject>Real time</subject><subject>real-time rendering</subject><subject>Real-time systems</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>Smartphones</subject><subject>Stability</subject><subject>Videos</subject><subject>Visual perception</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-AEEk4MVL6n5lN-tNqq1CW8FWr8smmUhqPupuo_jv3dAq4mkG5nlfhgehU4KHhGB1tXwZTYYUUzZkNFKEkz3UJ4qTEEdY7PsdSxlSQUUPHTm3wphwHqtD1GMSMyyF6KP5bL5YXAdzaK0pg0W7ButMtS6L-jUYW1PBZ2PfgryxwROYMlwWFfitzsB2RFMHsyYpSghu4aNIwR2jg9yUDk52c4Cex3fL0X04fZw8jG6mYcow3YQsznICsWCCcJarSAiVpKkBpvJI8IzKJFYqMjxmseRMRkaJnAuScZ6mkCeEDdDltndtm_cW3EZXhUuhLE0NTes0lSqWXgjGHr34h66a1tb-O-0dMP-PZMJTZEultnHOQq7XtqiM_dIE60627mTrTrbeyfaZ811zm1SQ_SZ-7HrgbAsUAPCn0B9jTtk3L8yAtA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yang, Sipeng</creator><creator>Zhao, Yunlu</creator><creator>Luo, Yuzhe</creator><creator>Wang, He</creator><creator>Sun, Hongyu</creator><creator>Li, Chen</creator><creator>Cai, Binghuang</creator><creator>Jin, Xiaogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7339-2920</orcidid><orcidid>https://orcid.org/0000-0002-2281-5679</orcidid><orcidid>https://orcid.org/0009-0004-6210-3598</orcidid><orcidid>https://orcid.org/0000-0002-8141-2335</orcidid><orcidid>https://orcid.org/0000-0002-0348-0690</orcidid><orcidid>https://orcid.org/0009-0002-4118-4777</orcidid></search><sort><creationdate>20240701</creationdate><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><author>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Hardware</topic><topic>High resolution</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Neural networks</topic><topic>neural supersampling</topic><topic>Real time</topic><topic>real-time rendering</topic><topic>Real-time systems</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>Smartphones</topic><topic>Stability</topic><topic>Videos</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sipeng</creatorcontrib><creatorcontrib>Zhao, Yunlu</creatorcontrib><creatorcontrib>Luo, Yuzhe</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Jin, Xiaogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Sipeng</au><au>Zhao, Yunlu</au><au>Luo, Yuzhe</au><au>Wang, He</au><au>Sun, Hongyu</au><au>Li, Chen</au><au>Cai, Binghuang</au><au>Jin, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>30</volume><issue>7</issue><spage>4271</spage><epage>4284</epage><pages>4271-4284</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37030766</pmid><doi>10.1109/TVCG.2023.3259141</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7339-2920</orcidid><orcidid>https://orcid.org/0000-0002-2281-5679</orcidid><orcidid>https://orcid.org/0009-0004-6210-3598</orcidid><orcidid>https://orcid.org/0000-0002-8141-2335</orcidid><orcidid>https://orcid.org/0000-0002-0348-0690</orcidid><orcidid>https://orcid.org/0009-0002-4118-4777</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2024-07, Vol.30 (7), p.4271-4284 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798714100 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Deep learning Electronic devices Hardware High resolution Image quality Image reconstruction Image resolution Neural networks neural supersampling Real time real-time rendering Real-time systems Rendering Rendering (computer graphics) Smartphones Stability Videos Visual perception |
title | MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MNSS:%20Neural%20Supersampling%20Framework%20for%20Real-Time%20Rendering%20on%20Mobile%20Devices&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Yang,%20Sipeng&rft.date=2024-07-01&rft.volume=30&rft.issue=7&rft.spage=4271&rft.epage=4284&rft.pages=4271-4284&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2023.3259141&rft_dat=%3Cproquest_RIE%3E2798714100%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073302736&rft_id=info:pmid/37030766&rft_ieee_id=10076842&rfr_iscdi=true |