MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices

Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-07, Vol.30 (7), p.4271-4284
Hauptverfasser: Yang, Sipeng, Zhao, Yunlu, Luo, Yuzhe, Wang, He, Sun, Hongyu, Li, Chen, Cai, Binghuang, Jin, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4284
container_issue 7
container_start_page 4271
container_title IEEE transactions on visualization and computer graphics
container_volume 30
creator Yang, Sipeng
Zhao, Yunlu
Luo, Yuzhe
Wang, He
Sun, Hongyu
Li, Chen
Cai, Binghuang
Jin, Xiaogang
description Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.
doi_str_mv 10.1109/TVCG.2023.3259141
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10076842</ieee_id><sourcerecordid>2798714100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AEEk4MVL6n5lN-tNqq1CW8FWr8smmUhqPupuo_jv3dAq4mkG5nlfhgehU4KHhGB1tXwZTYYUUzZkNFKEkz3UJ4qTEEdY7PsdSxlSQUUPHTm3wphwHqtD1GMSMyyF6KP5bL5YXAdzaK0pg0W7ButMtS6L-jUYW1PBZ2PfgryxwROYMlwWFfitzsB2RFMHsyYpSghu4aNIwR2jg9yUDk52c4Cex3fL0X04fZw8jG6mYcow3YQsznICsWCCcJarSAiVpKkBpvJI8IzKJFYqMjxmseRMRkaJnAuScZ6mkCeEDdDltndtm_cW3EZXhUuhLE0NTes0lSqWXgjGHr34h66a1tb-O-0dMP-PZMJTZEultnHOQq7XtqiM_dIE60627mTrTrbeyfaZ811zm1SQ_SZ-7HrgbAsUAPCn0B9jTtk3L8yAtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073302736</pqid></control><display><type>article</type><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</creator><creatorcontrib>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</creatorcontrib><description>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2023.3259141</identifier><identifier>PMID: 37030766</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Deep learning ; Electronic devices ; Hardware ; High resolution ; Image quality ; Image reconstruction ; Image resolution ; Neural networks ; neural supersampling ; Real time ; real-time rendering ; Real-time systems ; Rendering ; Rendering (computer graphics) ; Smartphones ; Stability ; Videos ; Visual perception</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-07, Vol.30 (7), p.4271-4284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</cites><orcidid>0000-0001-7339-2920 ; 0000-0002-2281-5679 ; 0009-0004-6210-3598 ; 0000-0002-8141-2335 ; 0000-0002-0348-0690 ; 0009-0002-4118-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10076842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10076842$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sipeng</creatorcontrib><creatorcontrib>Zhao, Yunlu</creatorcontrib><creatorcontrib>Luo, Yuzhe</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Jin, Xiaogang</creatorcontrib><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Hardware</subject><subject>High resolution</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Neural networks</subject><subject>neural supersampling</subject><subject>Real time</subject><subject>real-time rendering</subject><subject>Real-time systems</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>Smartphones</subject><subject>Stability</subject><subject>Videos</subject><subject>Visual perception</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-AEEk4MVL6n5lN-tNqq1CW8FWr8smmUhqPupuo_jv3dAq4mkG5nlfhgehU4KHhGB1tXwZTYYUUzZkNFKEkz3UJ4qTEEdY7PsdSxlSQUUPHTm3wphwHqtD1GMSMyyF6KP5bL5YXAdzaK0pg0W7ButMtS6L-jUYW1PBZ2PfgryxwROYMlwWFfitzsB2RFMHsyYpSghu4aNIwR2jg9yUDk52c4Cex3fL0X04fZw8jG6mYcow3YQsznICsWCCcJarSAiVpKkBpvJI8IzKJFYqMjxmseRMRkaJnAuScZ6mkCeEDdDltndtm_cW3EZXhUuhLE0NTes0lSqWXgjGHr34h66a1tb-O-0dMP-PZMJTZEultnHOQq7XtqiM_dIE60627mTrTrbeyfaZ811zm1SQ_SZ-7HrgbAsUAPCn0B9jTtk3L8yAtA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yang, Sipeng</creator><creator>Zhao, Yunlu</creator><creator>Luo, Yuzhe</creator><creator>Wang, He</creator><creator>Sun, Hongyu</creator><creator>Li, Chen</creator><creator>Cai, Binghuang</creator><creator>Jin, Xiaogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7339-2920</orcidid><orcidid>https://orcid.org/0000-0002-2281-5679</orcidid><orcidid>https://orcid.org/0009-0004-6210-3598</orcidid><orcidid>https://orcid.org/0000-0002-8141-2335</orcidid><orcidid>https://orcid.org/0000-0002-0348-0690</orcidid><orcidid>https://orcid.org/0009-0002-4118-4777</orcidid></search><sort><creationdate>20240701</creationdate><title>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</title><author>Yang, Sipeng ; Zhao, Yunlu ; Luo, Yuzhe ; Wang, He ; Sun, Hongyu ; Li, Chen ; Cai, Binghuang ; Jin, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-38df1e8636143f95669bccae39f564d27b8995a483874375a96f461d44ccefb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Hardware</topic><topic>High resolution</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Neural networks</topic><topic>neural supersampling</topic><topic>Real time</topic><topic>real-time rendering</topic><topic>Real-time systems</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>Smartphones</topic><topic>Stability</topic><topic>Videos</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sipeng</creatorcontrib><creatorcontrib>Zhao, Yunlu</creatorcontrib><creatorcontrib>Luo, Yuzhe</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cai, Binghuang</creatorcontrib><creatorcontrib>Jin, Xiaogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Sipeng</au><au>Zhao, Yunlu</au><au>Luo, Yuzhe</au><au>Wang, He</au><au>Sun, Hongyu</au><au>Li, Chen</au><au>Cai, Binghuang</au><au>Jin, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>30</volume><issue>7</issue><spage>4271</spage><epage>4284</epage><pages>4271-4284</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Although neural supersampling has achieved great success in various applications for improving image quality, it is still difficult to apply it to a wide range of real-time rendering applications due to the high computational power demand. Most existing methods are computationally expensive and require high-performance hardware, preventing their use on platforms with limited hardware, such as smartphones. To this end, we propose a new supersampling framework for real-time rendering applications to reconstruct a high-quality image out of a low-resolution one, which is sufficiently lightweight to run on smartphones within a real-time budget. Our model takes as input the renderer-generated low resolution content and produces high resolution and anti-aliased results. To maximize sampling efficiency, we propose using an alternate sub-pixel sample pattern during the rasterization process. This allows us to create a relatively small reconstruction model while maintaining high image quality. By accumulating new samples into a high-resolution history buffer, an efficient history check and re-usage scheme is introduced to improve temporal stability. To our knowledge, this is the first research in pushing real-time neural supersampling on mobile devices. Due to the absence of training data, we present a new dataset containing 57 training and test sequences from three game scenes. Furthermore, based on the rendered motion vectors and a visual perception study, we introduce a new metric called inter-frame structural similarity (IF-SSIM) to quantitatively measure the temporal stability of rendered videos. Extensive evaluations demonstrate that our supersampling model outperforms existing or alternative solutions in both performance and temporal stability.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37030766</pmid><doi>10.1109/TVCG.2023.3259141</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7339-2920</orcidid><orcidid>https://orcid.org/0000-0002-2281-5679</orcidid><orcidid>https://orcid.org/0009-0004-6210-3598</orcidid><orcidid>https://orcid.org/0000-0002-8141-2335</orcidid><orcidid>https://orcid.org/0000-0002-0348-0690</orcidid><orcidid>https://orcid.org/0009-0002-4118-4777</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-07, Vol.30 (7), p.4271-4284
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_proquest_miscellaneous_2798714100
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Deep learning
Electronic devices
Hardware
High resolution
Image quality
Image reconstruction
Image resolution
Neural networks
neural supersampling
Real time
real-time rendering
Real-time systems
Rendering
Rendering (computer graphics)
Smartphones
Stability
Videos
Visual perception
title MNSS: Neural Supersampling Framework for Real-Time Rendering on Mobile Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MNSS:%20Neural%20Supersampling%20Framework%20for%20Real-Time%20Rendering%20on%20Mobile%20Devices&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Yang,%20Sipeng&rft.date=2024-07-01&rft.volume=30&rft.issue=7&rft.spage=4271&rft.epage=4284&rft.pages=4271-4284&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2023.3259141&rft_dat=%3Cproquest_RIE%3E2798714100%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073302736&rft_id=info:pmid/37030766&rft_ieee_id=10076842&rfr_iscdi=true