Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design

•Printing parameters (speed, nozzle temperature, and layer thickness) have a statistically significant influence on the compressive viscoelastic properties of PLA parts.•MFCC scaffolds are superior to traditional OCS scaffolds from stiffness, yield strength, yield strain, and toughness perspectives....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2023-04, Vol.114, p.103972-103972, Article 103972
Hauptverfasser: Foroughi, Ali H., Valeri, Caleb, Jiang, Dayue, Ning, Fuda, Razavi, Masoud, Razavi, Mir Jalil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103972
container_issue
container_start_page 103972
container_title Medical engineering & physics
container_volume 114
creator Foroughi, Ali H.
Valeri, Caleb
Jiang, Dayue
Ning, Fuda
Razavi, Masoud
Razavi, Mir Jalil
description •Printing parameters (speed, nozzle temperature, and layer thickness) have a statistically significant influence on the compressive viscoelastic properties of PLA parts.•MFCC scaffolds are superior to traditional OCS scaffolds from stiffness, yield strength, yield strain, and toughness perspectives.•Viscoelastic properties of natural bone tissue can be achieved by the variation of FDM parameters of PLA bone scaffolds. Bone tissue engineering has been recognized as a promising strategy to repair or replace damaged bone tissues. The mechanical properties of bone scaffolds play a critical role in successful bone regeneration, as it is essential to match the mechanical properties of the scaffold with the surrounding bone tissue. In this study, we investigated the effects of fused deposition modeling (FDM) process parameters, including printing speed, printing temperature, and layer thickness, on the compressive viscoelastic properties of polylactic acid (PLA) scaffolds. The compressive viscoelastic properties of bulk PLA specimens were characterized using a Zhu-Wang-Tang (ZWT) constitutive model under different compressive strain rates. A comprehensive statistical analysis comprising multivariate and univariate analysis of variance (MANOVA and ANOVA) and Tukey's post hoc analysis was utilized to quantify the effect of each FDM parameter on the viscoelastic mechanical properties of the PLA specimens. Subsequently, we fabricated modified face-centered cubic (MFCC) scaffolds using FDM and varied the FDM process parameters to achieve a compressive viscoelastic response that matched the natural trabecular bone tissue. The viscoelastic performance of the MFCC scaffolds was compared with traditional orthogonal cylindrical struts (OCS) scaffolds. Our methodology contributes to the design of bone-mimetic scaffolds with optimized mechanical properties by controlling FDM process parameters.
doi_str_mv 10.1016/j.medengphy.2023.103972
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453323000243</els_id><sourcerecordid>2798714047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d83f4a31fb0a59166fc53b04005a48ea10b2ef3bd34a4192bbfe5e8abf02a6743</originalsourceid><addsrcrecordid>eNqFkEtv3CAURlGVKEkn-QsJy2w8BYONvRxFSVtppHbRrBGPy5SRDQ7YI82_L6NJsu2KK3S--zgIPVCypoS23_brESyE3fT3uK5Jzcov60X9Bd3QTrCKE0YuSs0aUvGGsWv0Nec9IYTzll2hayYK0PXtDXp7DRZSnlWwPuywieOUIGd_AHzw2UQYVJ69wVOKE6TZQ8bRYWWtnwszHPGowuKUmZcEFv_ebrCLCesYoBr9CKdoNsq5OFhsIftduEWXTg0Z7t7fFXp9ef7z9KPa_vr-82mzrQwTdK5sxxxXjDpNVNPTtnWmYZpwQhrFO1CU6Boc05ZxxWlfa-2ggU5pR2rVCs5W6PHct6z-tkCe5VgOgmFQAeKSZS36TlBOuCioOKMmxZwTODklP6p0lJTIk2-5l5--5cm3PPsuyfv3IYsuxGfuQ3ABNmcAyqkHD0lm4yEYsD6BmaWN_r9D_gGlTpin</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714047</pqid></control><display><type>article</type><title>Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Foroughi, Ali H. ; Valeri, Caleb ; Jiang, Dayue ; Ning, Fuda ; Razavi, Masoud ; Razavi, Mir Jalil</creator><creatorcontrib>Foroughi, Ali H. ; Valeri, Caleb ; Jiang, Dayue ; Ning, Fuda ; Razavi, Masoud ; Razavi, Mir Jalil</creatorcontrib><description>•Printing parameters (speed, nozzle temperature, and layer thickness) have a statistically significant influence on the compressive viscoelastic properties of PLA parts.•MFCC scaffolds are superior to traditional OCS scaffolds from stiffness, yield strength, yield strain, and toughness perspectives.•Viscoelastic properties of natural bone tissue can be achieved by the variation of FDM parameters of PLA bone scaffolds. Bone tissue engineering has been recognized as a promising strategy to repair or replace damaged bone tissues. The mechanical properties of bone scaffolds play a critical role in successful bone regeneration, as it is essential to match the mechanical properties of the scaffold with the surrounding bone tissue. In this study, we investigated the effects of fused deposition modeling (FDM) process parameters, including printing speed, printing temperature, and layer thickness, on the compressive viscoelastic properties of polylactic acid (PLA) scaffolds. The compressive viscoelastic properties of bulk PLA specimens were characterized using a Zhu-Wang-Tang (ZWT) constitutive model under different compressive strain rates. A comprehensive statistical analysis comprising multivariate and univariate analysis of variance (MANOVA and ANOVA) and Tukey's post hoc analysis was utilized to quantify the effect of each FDM parameter on the viscoelastic mechanical properties of the PLA specimens. Subsequently, we fabricated modified face-centered cubic (MFCC) scaffolds using FDM and varied the FDM process parameters to achieve a compressive viscoelastic response that matched the natural trabecular bone tissue. The viscoelastic performance of the MFCC scaffolds was compared with traditional orthogonal cylindrical struts (OCS) scaffolds. Our methodology contributes to the design of bone-mimetic scaffolds with optimized mechanical properties by controlling FDM process parameters.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2023.103972</identifier><identifier>PMID: 37030896</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bone and Bones ; Bone scaffold ; Dynamic mechanical properties ; Fused deposition modeling ; Polyesters ; Polylactic acid (PLA) ; Printing parameters ; Printing, Three-Dimensional ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Medical engineering &amp; physics, 2023-04, Vol.114, p.103972-103972, Article 103972</ispartof><rights>2023 IPEM</rights><rights>Copyright © 2023 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d83f4a31fb0a59166fc53b04005a48ea10b2ef3bd34a4192bbfe5e8abf02a6743</citedby><cites>FETCH-LOGICAL-c371t-d83f4a31fb0a59166fc53b04005a48ea10b2ef3bd34a4192bbfe5e8abf02a6743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2023.103972$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foroughi, Ali H.</creatorcontrib><creatorcontrib>Valeri, Caleb</creatorcontrib><creatorcontrib>Jiang, Dayue</creatorcontrib><creatorcontrib>Ning, Fuda</creatorcontrib><creatorcontrib>Razavi, Masoud</creatorcontrib><creatorcontrib>Razavi, Mir Jalil</creatorcontrib><title>Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>•Printing parameters (speed, nozzle temperature, and layer thickness) have a statistically significant influence on the compressive viscoelastic properties of PLA parts.•MFCC scaffolds are superior to traditional OCS scaffolds from stiffness, yield strength, yield strain, and toughness perspectives.•Viscoelastic properties of natural bone tissue can be achieved by the variation of FDM parameters of PLA bone scaffolds. Bone tissue engineering has been recognized as a promising strategy to repair or replace damaged bone tissues. The mechanical properties of bone scaffolds play a critical role in successful bone regeneration, as it is essential to match the mechanical properties of the scaffold with the surrounding bone tissue. In this study, we investigated the effects of fused deposition modeling (FDM) process parameters, including printing speed, printing temperature, and layer thickness, on the compressive viscoelastic properties of polylactic acid (PLA) scaffolds. The compressive viscoelastic properties of bulk PLA specimens were characterized using a Zhu-Wang-Tang (ZWT) constitutive model under different compressive strain rates. A comprehensive statistical analysis comprising multivariate and univariate analysis of variance (MANOVA and ANOVA) and Tukey's post hoc analysis was utilized to quantify the effect of each FDM parameter on the viscoelastic mechanical properties of the PLA specimens. Subsequently, we fabricated modified face-centered cubic (MFCC) scaffolds using FDM and varied the FDM process parameters to achieve a compressive viscoelastic response that matched the natural trabecular bone tissue. The viscoelastic performance of the MFCC scaffolds was compared with traditional orthogonal cylindrical struts (OCS) scaffolds. Our methodology contributes to the design of bone-mimetic scaffolds with optimized mechanical properties by controlling FDM process parameters.</description><subject>Bone and Bones</subject><subject>Bone scaffold</subject><subject>Dynamic mechanical properties</subject><subject>Fused deposition modeling</subject><subject>Polyesters</subject><subject>Polylactic acid (PLA)</subject><subject>Printing parameters</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtv3CAURlGVKEkn-QsJy2w8BYONvRxFSVtppHbRrBGPy5SRDQ7YI82_L6NJsu2KK3S--zgIPVCypoS23_brESyE3fT3uK5Jzcov60X9Bd3QTrCKE0YuSs0aUvGGsWv0Nec9IYTzll2hayYK0PXtDXp7DRZSnlWwPuywieOUIGd_AHzw2UQYVJ69wVOKE6TZQ8bRYWWtnwszHPGowuKUmZcEFv_ebrCLCesYoBr9CKdoNsq5OFhsIftduEWXTg0Z7t7fFXp9ef7z9KPa_vr-82mzrQwTdK5sxxxXjDpNVNPTtnWmYZpwQhrFO1CU6Boc05ZxxWlfa-2ggU5pR2rVCs5W6PHct6z-tkCe5VgOgmFQAeKSZS36TlBOuCioOKMmxZwTODklP6p0lJTIk2-5l5--5cm3PPsuyfv3IYsuxGfuQ3ABNmcAyqkHD0lm4yEYsD6BmaWN_r9D_gGlTpin</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Foroughi, Ali H.</creator><creator>Valeri, Caleb</creator><creator>Jiang, Dayue</creator><creator>Ning, Fuda</creator><creator>Razavi, Masoud</creator><creator>Razavi, Mir Jalil</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202304</creationdate><title>Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design</title><author>Foroughi, Ali H. ; Valeri, Caleb ; Jiang, Dayue ; Ning, Fuda ; Razavi, Masoud ; Razavi, Mir Jalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d83f4a31fb0a59166fc53b04005a48ea10b2ef3bd34a4192bbfe5e8abf02a6743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bone and Bones</topic><topic>Bone scaffold</topic><topic>Dynamic mechanical properties</topic><topic>Fused deposition modeling</topic><topic>Polyesters</topic><topic>Polylactic acid (PLA)</topic><topic>Printing parameters</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foroughi, Ali H.</creatorcontrib><creatorcontrib>Valeri, Caleb</creatorcontrib><creatorcontrib>Jiang, Dayue</creatorcontrib><creatorcontrib>Ning, Fuda</creatorcontrib><creatorcontrib>Razavi, Masoud</creatorcontrib><creatorcontrib>Razavi, Mir Jalil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foroughi, Ali H.</au><au>Valeri, Caleb</au><au>Jiang, Dayue</au><au>Ning, Fuda</au><au>Razavi, Masoud</au><au>Razavi, Mir Jalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2023-04</date><risdate>2023</risdate><volume>114</volume><spage>103972</spage><epage>103972</epage><pages>103972-103972</pages><artnum>103972</artnum><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>•Printing parameters (speed, nozzle temperature, and layer thickness) have a statistically significant influence on the compressive viscoelastic properties of PLA parts.•MFCC scaffolds are superior to traditional OCS scaffolds from stiffness, yield strength, yield strain, and toughness perspectives.•Viscoelastic properties of natural bone tissue can be achieved by the variation of FDM parameters of PLA bone scaffolds. Bone tissue engineering has been recognized as a promising strategy to repair or replace damaged bone tissues. The mechanical properties of bone scaffolds play a critical role in successful bone regeneration, as it is essential to match the mechanical properties of the scaffold with the surrounding bone tissue. In this study, we investigated the effects of fused deposition modeling (FDM) process parameters, including printing speed, printing temperature, and layer thickness, on the compressive viscoelastic properties of polylactic acid (PLA) scaffolds. The compressive viscoelastic properties of bulk PLA specimens were characterized using a Zhu-Wang-Tang (ZWT) constitutive model under different compressive strain rates. A comprehensive statistical analysis comprising multivariate and univariate analysis of variance (MANOVA and ANOVA) and Tukey's post hoc analysis was utilized to quantify the effect of each FDM parameter on the viscoelastic mechanical properties of the PLA specimens. Subsequently, we fabricated modified face-centered cubic (MFCC) scaffolds using FDM and varied the FDM process parameters to achieve a compressive viscoelastic response that matched the natural trabecular bone tissue. The viscoelastic performance of the MFCC scaffolds was compared with traditional orthogonal cylindrical struts (OCS) scaffolds. Our methodology contributes to the design of bone-mimetic scaffolds with optimized mechanical properties by controlling FDM process parameters.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37030896</pmid><doi>10.1016/j.medengphy.2023.103972</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2023-04, Vol.114, p.103972-103972, Article 103972
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_2798714047
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bone and Bones
Bone scaffold
Dynamic mechanical properties
Fused deposition modeling
Polyesters
Polylactic acid (PLA)
Printing parameters
Printing, Three-Dimensional
Tissue Engineering - methods
Tissue Scaffolds
title Understanding compressive viscoelastic properties of additively manufactured PLA for bone-mimetic scaffold design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20compressive%20viscoelastic%20properties%20of%20additively%20manufactured%20PLA%20for%20bone-mimetic%20scaffold%20design&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Foroughi,%20Ali%20H.&rft.date=2023-04&rft.volume=114&rft.spage=103972&rft.epage=103972&rft.pages=103972-103972&rft.artnum=103972&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2023.103972&rft_dat=%3Cproquest_cross%3E2798714047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798714047&rft_id=info:pmid/37030896&rft_els_id=S1350453323000243&rfr_iscdi=true