Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes
Patterned, ultra‐thin surface layers can serve as templates for positioning nanoparticlesor targeted self‐assembly of molecular structures, for example, block‐copolymers. This work investigates the high‐resolution, atomic force microscopebased patterning of 2 nm thick vinyl‐terminated polystyrene br...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-07, Vol.19 (29), p.e2204962-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e2204962 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Gröger, Roland Heiler, Tobias Schimmel, Thomas Walheim, Stefan |
description | Patterned, ultra‐thin surface layers can serve as templates for positioning nanoparticlesor targeted self‐assembly of molecular structures, for example, block‐copolymers. This work investigates the high‐resolution, atomic force microscopebased patterning of 2 nm thick vinyl‐terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane‐based fluorinated self‐assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM‐PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self‐assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all‐silicon diffraction gratings that could withstand focused high‐power 405 nm laser irradiation.
Due to their sliding properties, polystyrene brush layers on silicon can be structured with astonishing precision and endurance using the tip of an atomic force microscope. The 2nm thick brush patterns serve as templates to control the nanophase separation of a polymer mixture and can be transferred 30 nm deep into the silicon substrate with reactive ion etching. |
doi_str_mv | 10.1002/smll.202204962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798712516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798712516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3682-991905a75c0bcefec6b53f3dba389c068133baec64c3f1828191f501b21a04313</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotla3LmXAjZupOcncstTipTBewHYdMpmMnZK5mMwg3fkIPqNPYkprBTeucgjf-c7Pj9Ap4DFgTC5tpfWYYEJwwCKyh4YQAfWjhLD93Qx4gI6sXWJMgQTxIRrQGJMooHiI2Kxsvz4-p3XeS5V7j6JuWtF1ytRl_eo1hTfXnRHdoqy950avKmW8a9PbhbLH6KAQ2qqT7TtC89ub2eTeT5_uppOr1JfUxfAZA4ZDEYcSZ1IVSkZZSAuaZ4ImTGKXjtJMuO9A0gISkgCDIsSQERA4oEBH6GLjbU3z1ivb8aq0UmktatX0lpOYJTGQECKHnv9Bl01vapeOk8SdiyiwwFHjDSVNY61RBW9NWQmz4oD5ulS-LpXvSnULZ1ttn1Uq3-E_LTqAbYD3UqvVPzr-8pCmv_JvnqSCwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838963194</pqid></control><display><type>article</type><title>Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gröger, Roland ; Heiler, Tobias ; Schimmel, Thomas ; Walheim, Stefan</creator><creatorcontrib>Gröger, Roland ; Heiler, Tobias ; Schimmel, Thomas ; Walheim, Stefan</creatorcontrib><description>Patterned, ultra‐thin surface layers can serve as templates for positioning nanoparticlesor targeted self‐assembly of molecular structures, for example, block‐copolymers. This work investigates the high‐resolution, atomic force microscopebased patterning of 2 nm thick vinyl‐terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane‐based fluorinated self‐assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM‐PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self‐assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all‐silicon diffraction gratings that could withstand focused high‐power 405 nm laser irradiation.
Due to their sliding properties, polystyrene brush layers on silicon can be structured with astonishing precision and endurance using the tip of an atomic force microscope. The 2nm thick brush patterns serve as templates to control the nanophase separation of a polymer mixture and can be transferred 30 nm deep into the silicon substrate with reactive ion etching.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202204962</identifier><identifier>PMID: 37026430</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amplification ; Aspect ratio ; atomic force microscopy ; Block copolymers ; Bonding strength ; Brushes ; Copolymers ; directed self‐assembly ; Gratings (spectra) ; Heterostructures ; Line broadening ; Molecular structure ; nanoshaving ; Nanotechnology ; polymer blend lithography ; Polymer blends ; polymer brushes ; polymer phase amplified brush editing ; Polymers ; Polystyrene resins ; Self-assembly ; self‐assembled monolayers ; Silicon ; Surface layers ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2204962-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3682-991905a75c0bcefec6b53f3dba389c068133baec64c3f1828191f501b21a04313</cites><orcidid>0000-0002-2653-126X ; 0000-0003-0535-0264 ; 0000-0003-3183-9418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202204962$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202204962$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37026430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gröger, Roland</creatorcontrib><creatorcontrib>Heiler, Tobias</creatorcontrib><creatorcontrib>Schimmel, Thomas</creatorcontrib><creatorcontrib>Walheim, Stefan</creatorcontrib><title>Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Patterned, ultra‐thin surface layers can serve as templates for positioning nanoparticlesor targeted self‐assembly of molecular structures, for example, block‐copolymers. This work investigates the high‐resolution, atomic force microscopebased patterning of 2 nm thick vinyl‐terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane‐based fluorinated self‐assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM‐PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self‐assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all‐silicon diffraction gratings that could withstand focused high‐power 405 nm laser irradiation.
Due to their sliding properties, polystyrene brush layers on silicon can be structured with astonishing precision and endurance using the tip of an atomic force microscope. The 2nm thick brush patterns serve as templates to control the nanophase separation of a polymer mixture and can be transferred 30 nm deep into the silicon substrate with reactive ion etching.</description><subject>Amplification</subject><subject>Aspect ratio</subject><subject>atomic force microscopy</subject><subject>Block copolymers</subject><subject>Bonding strength</subject><subject>Brushes</subject><subject>Copolymers</subject><subject>directed self‐assembly</subject><subject>Gratings (spectra)</subject><subject>Heterostructures</subject><subject>Line broadening</subject><subject>Molecular structure</subject><subject>nanoshaving</subject><subject>Nanotechnology</subject><subject>polymer blend lithography</subject><subject>Polymer blends</subject><subject>polymer brushes</subject><subject>polymer phase amplified brush editing</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Self-assembly</subject><subject>self‐assembled monolayers</subject><subject>Silicon</subject><subject>Surface layers</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKAzEUhoMotla3LmXAjZupOcncstTipTBewHYdMpmMnZK5mMwg3fkIPqNPYkprBTeucgjf-c7Pj9Ap4DFgTC5tpfWYYEJwwCKyh4YQAfWjhLD93Qx4gI6sXWJMgQTxIRrQGJMooHiI2Kxsvz4-p3XeS5V7j6JuWtF1ytRl_eo1hTfXnRHdoqy950avKmW8a9PbhbLH6KAQ2qqT7TtC89ub2eTeT5_uppOr1JfUxfAZA4ZDEYcSZ1IVSkZZSAuaZ4ImTGKXjtJMuO9A0gISkgCDIsSQERA4oEBH6GLjbU3z1ivb8aq0UmktatX0lpOYJTGQECKHnv9Bl01vapeOk8SdiyiwwFHjDSVNY61RBW9NWQmz4oD5ulS-LpXvSnULZ1ttn1Uq3-E_LTqAbYD3UqvVPzr-8pCmv_JvnqSCwg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Gröger, Roland</creator><creator>Heiler, Tobias</creator><creator>Schimmel, Thomas</creator><creator>Walheim, Stefan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2653-126X</orcidid><orcidid>https://orcid.org/0000-0003-0535-0264</orcidid><orcidid>https://orcid.org/0000-0003-3183-9418</orcidid></search><sort><creationdate>20230701</creationdate><title>Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes</title><author>Gröger, Roland ; Heiler, Tobias ; Schimmel, Thomas ; Walheim, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3682-991905a75c0bcefec6b53f3dba389c068133baec64c3f1828191f501b21a04313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Aspect ratio</topic><topic>atomic force microscopy</topic><topic>Block copolymers</topic><topic>Bonding strength</topic><topic>Brushes</topic><topic>Copolymers</topic><topic>directed self‐assembly</topic><topic>Gratings (spectra)</topic><topic>Heterostructures</topic><topic>Line broadening</topic><topic>Molecular structure</topic><topic>nanoshaving</topic><topic>Nanotechnology</topic><topic>polymer blend lithography</topic><topic>Polymer blends</topic><topic>polymer brushes</topic><topic>polymer phase amplified brush editing</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Self-assembly</topic><topic>self‐assembled monolayers</topic><topic>Silicon</topic><topic>Surface layers</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gröger, Roland</creatorcontrib><creatorcontrib>Heiler, Tobias</creatorcontrib><creatorcontrib>Schimmel, Thomas</creatorcontrib><creatorcontrib>Walheim, Stefan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gröger, Roland</au><au>Heiler, Tobias</au><au>Schimmel, Thomas</au><au>Walheim, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>19</volume><issue>29</issue><spage>e2204962</spage><epage>n/a</epage><pages>e2204962-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Patterned, ultra‐thin surface layers can serve as templates for positioning nanoparticlesor targeted self‐assembly of molecular structures, for example, block‐copolymers. This work investigates the high‐resolution, atomic force microscopebased patterning of 2 nm thick vinyl‐terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane‐based fluorinated self‐assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM‐PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self‐assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all‐silicon diffraction gratings that could withstand focused high‐power 405 nm laser irradiation.
Due to their sliding properties, polystyrene brush layers on silicon can be structured with astonishing precision and endurance using the tip of an atomic force microscope. The 2nm thick brush patterns serve as templates to control the nanophase separation of a polymer mixture and can be transferred 30 nm deep into the silicon substrate with reactive ion etching.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37026430</pmid><doi>10.1002/smll.202204962</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2653-126X</orcidid><orcidid>https://orcid.org/0000-0003-0535-0264</orcidid><orcidid>https://orcid.org/0000-0003-3183-9418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2204962-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798712516 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Amplification Aspect ratio atomic force microscopy Block copolymers Bonding strength Brushes Copolymers directed self‐assembly Gratings (spectra) Heterostructures Line broadening Molecular structure nanoshaving Nanotechnology polymer blend lithography Polymer blends polymer brushes polymer phase amplified brush editing Polymers Polystyrene resins Self-assembly self‐assembled monolayers Silicon Surface layers Thin films |
title | Tip‐Induced Nanopatterning of Ultrathin Polymer Brushes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tip%E2%80%90Induced%20Nanopatterning%20of%20Ultrathin%20Polymer%20Brushes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gr%C3%B6ger,%20Roland&rft.date=2023-07-01&rft.volume=19&rft.issue=29&rft.spage=e2204962&rft.epage=n/a&rft.pages=e2204962-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202204962&rft_dat=%3Cproquest_cross%3E2798712516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838963194&rft_id=info:pmid/37026430&rfr_iscdi=true |