Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm
Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based o...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-09, Vol.PP (9), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Bai, Chengchao Zhang, Jiawei Guo, Jifeng Yue, C. Patrick |
description | Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task. |
doi_str_mv | 10.1109/TNNLS.2023.3262109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798712164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10097586</ieee_id><sourcerecordid>2859712235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</originalsourceid><addsrcrecordid>eNpdkNtKxDAQhoMoKuoLiEjBG2-6JpOmaS5X8ch6ABW9C2k6lci2XZNW0Kc3664i5iaH-eZn8hGyy-iIMaqOHm5uJvcjoMBHHHKITytkE1gOKfCiWP09y-cNshPCK40rpyLP1DrZ4JKCBEk3ydO4MrPevWNy8VF6VyW38da4T9O7rk0maHzr2pf02ASskrG1gzc9Jtfdd_luatp5Oenq5HqY9i696lzbJ2PfbJO12kwD7iz3LfJ4dvpwcpFObs8vT8aT1HLK-1QwW5WVNTlKg5IxYzFHBIFZVTKLitEs_lCBEhmvKwEilxTLsqglBw6Z4lvkcJE7893bgKHXjQsWp3Ey7IagQapCsugii-jBP_S1G3wbp9NQCBUp4CJSsKCs70LwWOuZd43xH5pRPTevv83ruXm9NB-b9pfRQ9lg9dvy4zkCewvAIeKfRKqkKHL-BYxXhos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859712235</pqid></control><display><type>article</type><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</creator><creatorcontrib>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</creatorcontrib><description>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3262109</identifier><identifier>PMID: 37027270</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adaptive learning ; Algorithms ; Arm ; Artificial potential field (APF) ; Changing environments ; Environmental changes ; Heuristic algorithms ; hybrid dynamic strategy ; Learning ; Machine learning ; Manipulator dynamics ; manipulator motion planning ; Manipulators ; Motion planning ; Neural networks ; Obstacle avoidance ; Optimization ; Planning ; Potential fields ; Reinforcement ; Reinforcement learning ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.PP (9), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</cites><orcidid>0000-0002-0349-9869 ; 0000-0002-5904-0360 ; 0000-0002-0211-2394 ; 0000-0003-2840-9820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10097586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10097586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Yue, C. Patrick</creatorcontrib><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</description><subject>Accuracy</subject><subject>Adaptive learning</subject><subject>Algorithms</subject><subject>Arm</subject><subject>Artificial potential field (APF)</subject><subject>Changing environments</subject><subject>Environmental changes</subject><subject>Heuristic algorithms</subject><subject>hybrid dynamic strategy</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Manipulator dynamics</subject><subject>manipulator motion planning</subject><subject>Manipulators</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>Planning</subject><subject>Potential fields</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNtKxDAQhoMoKuoLiEjBG2-6JpOmaS5X8ch6ABW9C2k6lci2XZNW0Kc3664i5iaH-eZn8hGyy-iIMaqOHm5uJvcjoMBHHHKITytkE1gOKfCiWP09y-cNshPCK40rpyLP1DrZ4JKCBEk3ydO4MrPevWNy8VF6VyW38da4T9O7rk0maHzr2pf02ASskrG1gzc9Jtfdd_luatp5Oenq5HqY9i696lzbJ2PfbJO12kwD7iz3LfJ4dvpwcpFObs8vT8aT1HLK-1QwW5WVNTlKg5IxYzFHBIFZVTKLitEs_lCBEhmvKwEilxTLsqglBw6Z4lvkcJE7893bgKHXjQsWp3Ey7IagQapCsugii-jBP_S1G3wbp9NQCBUp4CJSsKCs70LwWOuZd43xH5pRPTevv83ruXm9NB-b9pfRQ9lg9dvy4zkCewvAIeKfRKqkKHL-BYxXhos</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bai, Chengchao</creator><creator>Zhang, Jiawei</creator><creator>Guo, Jifeng</creator><creator>Yue, C. Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-5904-0360</orcidid><orcidid>https://orcid.org/0000-0002-0211-2394</orcidid><orcidid>https://orcid.org/0000-0003-2840-9820</orcidid></search><sort><creationdate>20230901</creationdate><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><author>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive learning</topic><topic>Algorithms</topic><topic>Arm</topic><topic>Artificial potential field (APF)</topic><topic>Changing environments</topic><topic>Environmental changes</topic><topic>Heuristic algorithms</topic><topic>hybrid dynamic strategy</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Manipulator dynamics</topic><topic>manipulator motion planning</topic><topic>Manipulators</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>Planning</topic><topic>Potential fields</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Yue, C. Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Chengchao</au><au>Zhang, Jiawei</au><au>Guo, Jifeng</au><au>Yue, C. Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>PP</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027270</pmid><doi>10.1109/TNNLS.2023.3262109</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-5904-0360</orcidid><orcidid>https://orcid.org/0000-0002-0211-2394</orcidid><orcidid>https://orcid.org/0000-0003-2840-9820</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-09, Vol.PP (9), p.1-12 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798712164 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptive learning Algorithms Arm Artificial potential field (APF) Changing environments Environmental changes Heuristic algorithms hybrid dynamic strategy Learning Machine learning Manipulator dynamics manipulator motion planning Manipulators Motion planning Neural networks Obstacle avoidance Optimization Planning Potential fields Reinforcement Reinforcement learning Task analysis Training |
title | Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Hybrid%20Optimization%20Learning-Based%20Accurate%20Motion%20Planning%20of%20Multi-Joint%20Arm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bai,%20Chengchao&rft.date=2023-09-01&rft.volume=PP&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3262109&rft_dat=%3Cproquest_RIE%3E2859712235%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859712235&rft_id=info:pmid/37027270&rft_ieee_id=10097586&rfr_iscdi=true |