Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm

Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-09, Vol.PP (9), p.1-12
Hauptverfasser: Bai, Chengchao, Zhang, Jiawei, Guo, Jifeng, Yue, C. Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 9
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Bai, Chengchao
Zhang, Jiawei
Guo, Jifeng
Yue, C. Patrick
description Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.
doi_str_mv 10.1109/TNNLS.2023.3262109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798712164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10097586</ieee_id><sourcerecordid>2859712235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</originalsourceid><addsrcrecordid>eNpdkNtKxDAQhoMoKuoLiEjBG2-6JpOmaS5X8ch6ABW9C2k6lci2XZNW0Kc3664i5iaH-eZn8hGyy-iIMaqOHm5uJvcjoMBHHHKITytkE1gOKfCiWP09y-cNshPCK40rpyLP1DrZ4JKCBEk3ydO4MrPevWNy8VF6VyW38da4T9O7rk0maHzr2pf02ASskrG1gzc9Jtfdd_luatp5Oenq5HqY9i696lzbJ2PfbJO12kwD7iz3LfJ4dvpwcpFObs8vT8aT1HLK-1QwW5WVNTlKg5IxYzFHBIFZVTKLitEs_lCBEhmvKwEilxTLsqglBw6Z4lvkcJE7893bgKHXjQsWp3Ey7IagQapCsugii-jBP_S1G3wbp9NQCBUp4CJSsKCs70LwWOuZd43xH5pRPTevv83ruXm9NB-b9pfRQ9lg9dvy4zkCewvAIeKfRKqkKHL-BYxXhos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859712235</pqid></control><display><type>article</type><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</creator><creatorcontrib>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</creatorcontrib><description>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3262109</identifier><identifier>PMID: 37027270</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adaptive learning ; Algorithms ; Arm ; Artificial potential field (APF) ; Changing environments ; Environmental changes ; Heuristic algorithms ; hybrid dynamic strategy ; Learning ; Machine learning ; Manipulator dynamics ; manipulator motion planning ; Manipulators ; Motion planning ; Neural networks ; Obstacle avoidance ; Optimization ; Planning ; Potential fields ; Reinforcement ; Reinforcement learning ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.PP (9), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</cites><orcidid>0000-0002-0349-9869 ; 0000-0002-5904-0360 ; 0000-0002-0211-2394 ; 0000-0003-2840-9820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10097586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10097586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Yue, C. Patrick</creatorcontrib><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</description><subject>Accuracy</subject><subject>Adaptive learning</subject><subject>Algorithms</subject><subject>Arm</subject><subject>Artificial potential field (APF)</subject><subject>Changing environments</subject><subject>Environmental changes</subject><subject>Heuristic algorithms</subject><subject>hybrid dynamic strategy</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Manipulator dynamics</subject><subject>manipulator motion planning</subject><subject>Manipulators</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>Planning</subject><subject>Potential fields</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNtKxDAQhoMoKuoLiEjBG2-6JpOmaS5X8ch6ABW9C2k6lci2XZNW0Kc3664i5iaH-eZn8hGyy-iIMaqOHm5uJvcjoMBHHHKITytkE1gOKfCiWP09y-cNshPCK40rpyLP1DrZ4JKCBEk3ydO4MrPevWNy8VF6VyW38da4T9O7rk0maHzr2pf02ASskrG1gzc9Jtfdd_luatp5Oenq5HqY9i696lzbJ2PfbJO12kwD7iz3LfJ4dvpwcpFObs8vT8aT1HLK-1QwW5WVNTlKg5IxYzFHBIFZVTKLitEs_lCBEhmvKwEilxTLsqglBw6Z4lvkcJE7893bgKHXjQsWp3Ey7IagQapCsugii-jBP_S1G3wbp9NQCBUp4CJSsKCs70LwWOuZd43xH5pRPTevv83ruXm9NB-b9pfRQ9lg9dvy4zkCewvAIeKfRKqkKHL-BYxXhos</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bai, Chengchao</creator><creator>Zhang, Jiawei</creator><creator>Guo, Jifeng</creator><creator>Yue, C. Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-5904-0360</orcidid><orcidid>https://orcid.org/0000-0002-0211-2394</orcidid><orcidid>https://orcid.org/0000-0003-2840-9820</orcidid></search><sort><creationdate>20230901</creationdate><title>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</title><author>Bai, Chengchao ; Zhang, Jiawei ; Guo, Jifeng ; Yue, C. Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-51cdbdca6e7ae711ace6ee25e4db1ce9104023929543fd525670ebb8f73232493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive learning</topic><topic>Algorithms</topic><topic>Arm</topic><topic>Artificial potential field (APF)</topic><topic>Changing environments</topic><topic>Environmental changes</topic><topic>Heuristic algorithms</topic><topic>hybrid dynamic strategy</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Manipulator dynamics</topic><topic>manipulator motion planning</topic><topic>Manipulators</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>Planning</topic><topic>Potential fields</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Yue, C. Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Chengchao</au><au>Zhang, Jiawei</au><au>Guo, Jifeng</au><au>Yue, C. Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>PP</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Motion planning is important to the automatic operation of the manipulator. It is difficult for traditional motion planning algorithms to achieve efficient online motion planning in a rapidly changing environment and high-dimensional planning space. The neural motion planning (NMP) algorithm based on reinforcement learning provides a new way to solve the above-mentioned task. Aiming to overcome the difficulty of training the neural network in high-accuracy planning tasks, this article proposes to combine the artificial potential field (APF) method and reinforcement learning. The neural motion planner can avoid obstacles in a wide range; meanwhile, the APF method is exploited to adjust the partial position. Considering that the action space of the manipulator is high-dimensional and continuous, the soft-actor-critic (SAC) algorithm is adopted to train the neural motion planner. By training and testing with different accuracy values in a simulation engine, it is verified that, in the high-accuracy planning tasks, the success rate of the proposed hybrid method is better than using the two algorithms alone. Finally, the feasibility of directly transferring the learned neural network to the real manipulator is verified by a dynamic obstacle-avoidance task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027270</pmid><doi>10.1109/TNNLS.2023.3262109</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-5904-0360</orcidid><orcidid>https://orcid.org/0000-0002-0211-2394</orcidid><orcidid>https://orcid.org/0000-0003-2840-9820</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-09, Vol.PP (9), p.1-12
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2798712164
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptive learning
Algorithms
Arm
Artificial potential field (APF)
Changing environments
Environmental changes
Heuristic algorithms
hybrid dynamic strategy
Learning
Machine learning
Manipulator dynamics
manipulator motion planning
Manipulators
Motion planning
Neural networks
Obstacle avoidance
Optimization
Planning
Potential fields
Reinforcement
Reinforcement learning
Task analysis
Training
title Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Hybrid%20Optimization%20Learning-Based%20Accurate%20Motion%20Planning%20of%20Multi-Joint%20Arm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bai,%20Chengchao&rft.date=2023-09-01&rft.volume=PP&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3262109&rft_dat=%3Cproquest_RIE%3E2859712235%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859712235&rft_id=info:pmid/37027270&rft_ieee_id=10097586&rfr_iscdi=true