Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space
Adversarial training (AT) is a promising method to improve the robustness against adversarial attacks. However, its performance is not still satisfactory in practice compared with standard training. To reveal the cause of the difficulty of AT, we analyze the smoothness of the loss function in AT, wh...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-08, Vol.35 (8), p.10817-10831 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10831 |
---|---|
container_issue | 8 |
container_start_page | 10817 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Kanai, Sekitoshi Yamada, Masanori Takahashi, Hiroshi Yamanaka, Yuki Ida, Yasutoshi |
description | Adversarial training (AT) is a promising method to improve the robustness against adversarial attacks. However, its performance is not still satisfactory in practice compared with standard training. To reveal the cause of the difficulty of AT, we analyze the smoothness of the loss function in AT, which determines the training performance. We reveal that nonsmoothness is caused by the constraint of adversarial attacks and depends on the type of constraint. Specifically, the L_{\infty} constraint can cause nonsmoothness more than the L_{2} constraint. In addition, we found an interesting property for AT: the flatter loss surface in the input space tends to have the less smooth adversarial loss surface in the parameter space . To confirm that the nonsmoothness causes the poor performance of AT, we theoretically and experimentally show that smooth adversarial loss by EntropySGD (EnSGD) improves the performance of AT. |
doi_str_mv | 10.1109/TNNLS.2023.3244172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798710948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049380</ieee_id><sourcerecordid>2798710948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8350c53af31151da9c33fb8713101799ebdbe2b18584b0181e87f05921d36e73</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0Eoqj0BxBCXrJoix9JbC9LRaFSVSSaBbvISSbUkDghdkH8PSl9iNnMjHTuWVyErigZU0rUXbxcLlZjRhgfcxYEVLATdMFoxEaMS3l6vMVrDw2ceyfdRCSMAnWOelwQJiLFL5B7gVJ7U1u3Ng2-B_8NYPGy-6u69msLzmFj8ST_gtbp1ugSx6021ti3IZ52mN9-3uG6wBPvdfbhhljbHM867SHt14Dnttl4vGp0BpforNClg8F-91E8e4inT6PF8-N8OlmMMh5JP5I8JFnIdcEpDWmuVcZ5kUpBOSVUKAVpngJLqQxlkBIqKUhRkFAxmvMIBO-j2522aevPDTifVMZlUJbaQr1xCROqkxEVyA5lOzRra-daKJKmNZVufxJKkm3dyV_dybbuZF93F7rZ-zdpBfkxcii3A653gAGAf0YSKC4J_wXY7IRV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798710948</pqid></control><display><type>article</type><title>Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space</title><source>IEEE Electronic Library (IEL)</source><creator>Kanai, Sekitoshi ; Yamada, Masanori ; Takahashi, Hiroshi ; Yamanaka, Yuki ; Ida, Yasutoshi</creator><creatorcontrib>Kanai, Sekitoshi ; Yamada, Masanori ; Takahashi, Hiroshi ; Yamanaka, Yuki ; Ida, Yasutoshi</creatorcontrib><description><![CDATA[Adversarial training (AT) is a promising method to improve the robustness against adversarial attacks. However, its performance is not still satisfactory in practice compared with standard training. To reveal the cause of the difficulty of AT, we analyze the smoothness of the loss function in AT, which determines the training performance. We reveal that nonsmoothness is caused by the constraint of adversarial attacks and depends on the type of constraint. Specifically, the <inline-formula> <tex-math notation="LaTeX">L_{\infty} </tex-math></inline-formula> constraint can cause nonsmoothness more than the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> constraint. In addition, we found an interesting property for AT: the flatter loss surface in the input space tends to have the less smooth adversarial loss surface in the parameter space . To confirm that the nonsmoothness causes the poor performance of AT, we theoretically and experimentally show that smooth adversarial loss by EntropySGD (EnSGD) improves the performance of AT.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3244172</identifier><identifier>PMID: 37027693</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adversarial robustness ; adversarial training (AT) ; Convergence ; Deep learning ; deep neural network (DNN) ; Linear programming ; optimization ; Robustness ; Stability criteria ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.10817-10831</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8350c53af31151da9c33fb8713101799ebdbe2b18584b0181e87f05921d36e73</citedby><cites>FETCH-LOGICAL-c368t-8350c53af31151da9c33fb8713101799ebdbe2b18584b0181e87f05921d36e73</cites><orcidid>0000-0001-5102-2830 ; 0000-0002-9527-1721 ; 0000-0003-4383-4454 ; 0000-0003-4279-9503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049380$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanai, Sekitoshi</creatorcontrib><creatorcontrib>Yamada, Masanori</creatorcontrib><creatorcontrib>Takahashi, Hiroshi</creatorcontrib><creatorcontrib>Yamanaka, Yuki</creatorcontrib><creatorcontrib>Ida, Yasutoshi</creatorcontrib><title>Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Adversarial training (AT) is a promising method to improve the robustness against adversarial attacks. However, its performance is not still satisfactory in practice compared with standard training. To reveal the cause of the difficulty of AT, we analyze the smoothness of the loss function in AT, which determines the training performance. We reveal that nonsmoothness is caused by the constraint of adversarial attacks and depends on the type of constraint. Specifically, the <inline-formula> <tex-math notation="LaTeX">L_{\infty} </tex-math></inline-formula> constraint can cause nonsmoothness more than the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> constraint. In addition, we found an interesting property for AT: the flatter loss surface in the input space tends to have the less smooth adversarial loss surface in the parameter space . To confirm that the nonsmoothness causes the poor performance of AT, we theoretically and experimentally show that smooth adversarial loss by EntropySGD (EnSGD) improves the performance of AT.]]></description><subject>Adversarial robustness</subject><subject>adversarial training (AT)</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>deep neural network (DNN)</subject><subject>Linear programming</subject><subject>optimization</subject><subject>Robustness</subject><subject>Stability criteria</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0Eoqj0BxBCXrJoix9JbC9LRaFSVSSaBbvISSbUkDghdkH8PSl9iNnMjHTuWVyErigZU0rUXbxcLlZjRhgfcxYEVLATdMFoxEaMS3l6vMVrDw2ceyfdRCSMAnWOelwQJiLFL5B7gVJ7U1u3Ng2-B_8NYPGy-6u69msLzmFj8ST_gtbp1ugSx6021ti3IZ52mN9-3uG6wBPvdfbhhljbHM867SHt14Dnttl4vGp0BpforNClg8F-91E8e4inT6PF8-N8OlmMMh5JP5I8JFnIdcEpDWmuVcZ5kUpBOSVUKAVpngJLqQxlkBIqKUhRkFAxmvMIBO-j2522aevPDTifVMZlUJbaQr1xCROqkxEVyA5lOzRra-daKJKmNZVufxJKkm3dyV_dybbuZF93F7rZ-zdpBfkxcii3A653gAGAf0YSKC4J_wXY7IRV</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kanai, Sekitoshi</creator><creator>Yamada, Masanori</creator><creator>Takahashi, Hiroshi</creator><creator>Yamanaka, Yuki</creator><creator>Ida, Yasutoshi</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5102-2830</orcidid><orcidid>https://orcid.org/0000-0002-9527-1721</orcidid><orcidid>https://orcid.org/0000-0003-4383-4454</orcidid><orcidid>https://orcid.org/0000-0003-4279-9503</orcidid></search><sort><creationdate>20240801</creationdate><title>Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space</title><author>Kanai, Sekitoshi ; Yamada, Masanori ; Takahashi, Hiroshi ; Yamanaka, Yuki ; Ida, Yasutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8350c53af31151da9c33fb8713101799ebdbe2b18584b0181e87f05921d36e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adversarial robustness</topic><topic>adversarial training (AT)</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>deep neural network (DNN)</topic><topic>Linear programming</topic><topic>optimization</topic><topic>Robustness</topic><topic>Stability criteria</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanai, Sekitoshi</creatorcontrib><creatorcontrib>Yamada, Masanori</creatorcontrib><creatorcontrib>Takahashi, Hiroshi</creatorcontrib><creatorcontrib>Yamanaka, Yuki</creatorcontrib><creatorcontrib>Ida, Yasutoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanai, Sekitoshi</au><au>Yamada, Masanori</au><au>Takahashi, Hiroshi</au><au>Yamanaka, Yuki</au><au>Ida, Yasutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>10817</spage><epage>10831</epage><pages>10817-10831</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Adversarial training (AT) is a promising method to improve the robustness against adversarial attacks. However, its performance is not still satisfactory in practice compared with standard training. To reveal the cause of the difficulty of AT, we analyze the smoothness of the loss function in AT, which determines the training performance. We reveal that nonsmoothness is caused by the constraint of adversarial attacks and depends on the type of constraint. Specifically, the <inline-formula> <tex-math notation="LaTeX">L_{\infty} </tex-math></inline-formula> constraint can cause nonsmoothness more than the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> constraint. In addition, we found an interesting property for AT: the flatter loss surface in the input space tends to have the less smooth adversarial loss surface in the parameter space . To confirm that the nonsmoothness causes the poor performance of AT, we theoretically and experimentally show that smooth adversarial loss by EntropySGD (EnSGD) improves the performance of AT.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027693</pmid><doi>10.1109/TNNLS.2023.3244172</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5102-2830</orcidid><orcidid>https://orcid.org/0000-0002-9527-1721</orcidid><orcidid>https://orcid.org/0000-0003-4383-4454</orcidid><orcidid>https://orcid.org/0000-0003-4279-9503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.10817-10831 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798710948 |
source | IEEE Electronic Library (IEL) |
subjects | Adversarial robustness adversarial training (AT) Convergence Deep learning deep neural network (DNN) Linear programming optimization Robustness Stability criteria Training |
title | Relationship Between Nonsmoothness in Adversarial Training, Constraints of Attacks, and Flatness in the Input Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20Between%20Nonsmoothness%20in%20Adversarial%20Training,%20Constraints%20of%20Attacks,%20and%20Flatness%20in%20the%20Input%20Space&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Kanai,%20Sekitoshi&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=10817&rft.epage=10831&rft.pages=10817-10831&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3244172&rft_dat=%3Cproquest_ieee_%3E2798710948%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798710948&rft_id=info:pmid/37027693&rft_ieee_id=10049380&rfr_iscdi=true |