Alternating the current direction
Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalit...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2023-04, Vol.380 (6640), p.34-35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 6640 |
container_start_page | 34 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 380 |
creator | Guo, Peng Ye, Ke-Yin |
description | Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids
Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions (
1
) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki
et al.
(
2
) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids. |
doi_str_mv | 10.1126/science.adh1837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798708772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798708772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUws6EiFpa050diZ6wqXlIlFpgt177QVHkU2xn47zFqYEA66Yb77ne6j5BrCgtKWbEMtsbO4sK4HVVcnpAphTLPSgb8lEwBeJEpkPmEXISwB0izkp-TCZfAOFV0Sm5XTUTfmVh3H_O4w7kdvMcuzl3t0ca67y7JWWWagFdjn5H3x4e39XO2eX16Wa82mWWyjNk2BRrBhHOK55XkzgpgLJVSQJVFVglurZKFEbYCUYgCqMtlaVFKBiXyGbk_5h58_zlgiLqtg8WmMR32Q9DpipKgEp3Qu3_ovh_SE02iFIj0NRMyUcsjZX0fgsdKH3zdGv-lKegfe3q0p0d7aeNmzB22Lbo__lcX_waraWoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804036247</pqid></control><display><type>article</type><title>Alternating the current direction</title><source>American Association for the Advancement of Science</source><creator>Guo, Peng ; Ye, Ke-Yin</creator><creatorcontrib>Guo, Peng ; Ye, Ke-Yin</creatorcontrib><description>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids
Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions (
1
) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki
et al.
(
2
) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adh1837</identifier><identifier>PMID: 37023181</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Aliphatic compounds ; Aromatic compounds ; Carbon ; Carboxylic acids ; Chemical bonds ; Chemical reactions ; Coupling (molecular) ; Covalent bonds ; Cross coupling ; Materials science ; Organic chemistry ; Organic compounds ; Transition metals ; Waveforms</subject><ispartof>Science (American Association for the Advancement of Science), 2023-04, Vol.380 (6640), p.34-35</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37023181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Peng</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><title>Alternating the current direction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids
Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions (
1
) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki
et al.
(
2
) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</description><subject>Aliphatic compounds</subject><subject>Aromatic compounds</subject><subject>Carbon</subject><subject>Carboxylic acids</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Coupling (molecular)</subject><subject>Covalent bonds</subject><subject>Cross coupling</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Transition metals</subject><subject>Waveforms</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkLtPwzAQhy0EoqUws6EiFpa050diZ6wqXlIlFpgt177QVHkU2xn47zFqYEA66Yb77ne6j5BrCgtKWbEMtsbO4sK4HVVcnpAphTLPSgb8lEwBeJEpkPmEXISwB0izkp-TCZfAOFV0Sm5XTUTfmVh3H_O4w7kdvMcuzl3t0ca67y7JWWWagFdjn5H3x4e39XO2eX16Wa82mWWyjNk2BRrBhHOK55XkzgpgLJVSQJVFVglurZKFEbYCUYgCqMtlaVFKBiXyGbk_5h58_zlgiLqtg8WmMR32Q9DpipKgEp3Qu3_ovh_SE02iFIj0NRMyUcsjZX0fgsdKH3zdGv-lKegfe3q0p0d7aeNmzB22Lbo__lcX_waraWoc</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Guo, Peng</creator><creator>Ye, Ke-Yin</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20230407</creationdate><title>Alternating the current direction</title><author>Guo, Peng ; Ye, Ke-Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic compounds</topic><topic>Aromatic compounds</topic><topic>Carbon</topic><topic>Carboxylic acids</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Coupling (molecular)</topic><topic>Covalent bonds</topic><topic>Cross coupling</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Transition metals</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Peng</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Peng</au><au>Ye, Ke-Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating the current direction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>380</volume><issue>6640</issue><spage>34</spage><epage>35</epage><pages>34-35</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids
Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions (
1
) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki
et al.
(
2
) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>37023181</pmid><doi>10.1126/science.adh1837</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2023-04, Vol.380 (6640), p.34-35 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798708772 |
source | American Association for the Advancement of Science |
subjects | Aliphatic compounds Aromatic compounds Carbon Carboxylic acids Chemical bonds Chemical reactions Coupling (molecular) Covalent bonds Cross coupling Materials science Organic chemistry Organic compounds Transition metals Waveforms |
title | Alternating the current direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20the%20current%20direction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Guo,%20Peng&rft.date=2023-04-07&rft.volume=380&rft.issue=6640&rft.spage=34&rft.epage=35&rft.pages=34-35&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adh1837&rft_dat=%3Cproquest_cross%3E2798708772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804036247&rft_id=info:pmid/37023181&rfr_iscdi=true |