Alternating the current direction

Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-04, Vol.380 (6640), p.34-35
Hauptverfasser: Guo, Peng, Ye, Ke-Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 6640
container_start_page 34
container_title Science (American Association for the Advancement of Science)
container_volume 380
creator Guo, Peng
Ye, Ke-Yin
description Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions ( 1 ) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki et al. ( 2 ) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.
doi_str_mv 10.1126/science.adh1837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798708772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798708772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUws6EiFpa050diZ6wqXlIlFpgt177QVHkU2xn47zFqYEA66Yb77ne6j5BrCgtKWbEMtsbO4sK4HVVcnpAphTLPSgb8lEwBeJEpkPmEXISwB0izkp-TCZfAOFV0Sm5XTUTfmVh3H_O4w7kdvMcuzl3t0ca67y7JWWWagFdjn5H3x4e39XO2eX16Wa82mWWyjNk2BRrBhHOK55XkzgpgLJVSQJVFVglurZKFEbYCUYgCqMtlaVFKBiXyGbk_5h58_zlgiLqtg8WmMR32Q9DpipKgEp3Qu3_ovh_SE02iFIj0NRMyUcsjZX0fgsdKH3zdGv-lKegfe3q0p0d7aeNmzB22Lbo__lcX_waraWoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804036247</pqid></control><display><type>article</type><title>Alternating the current direction</title><source>American Association for the Advancement of Science</source><creator>Guo, Peng ; Ye, Ke-Yin</creator><creatorcontrib>Guo, Peng ; Ye, Ke-Yin</creatorcontrib><description>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions ( 1 ) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki et al. ( 2 ) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adh1837</identifier><identifier>PMID: 37023181</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Aliphatic compounds ; Aromatic compounds ; Carbon ; Carboxylic acids ; Chemical bonds ; Chemical reactions ; Coupling (molecular) ; Covalent bonds ; Cross coupling ; Materials science ; Organic chemistry ; Organic compounds ; Transition metals ; Waveforms</subject><ispartof>Science (American Association for the Advancement of Science), 2023-04, Vol.380 (6640), p.34-35</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37023181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Peng</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><title>Alternating the current direction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions ( 1 ) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki et al. ( 2 ) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</description><subject>Aliphatic compounds</subject><subject>Aromatic compounds</subject><subject>Carbon</subject><subject>Carboxylic acids</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Coupling (molecular)</subject><subject>Covalent bonds</subject><subject>Cross coupling</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Transition metals</subject><subject>Waveforms</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkLtPwzAQhy0EoqUws6EiFpa050diZ6wqXlIlFpgt177QVHkU2xn47zFqYEA66Yb77ne6j5BrCgtKWbEMtsbO4sK4HVVcnpAphTLPSgb8lEwBeJEpkPmEXISwB0izkp-TCZfAOFV0Sm5XTUTfmVh3H_O4w7kdvMcuzl3t0ca67y7JWWWagFdjn5H3x4e39XO2eX16Wa82mWWyjNk2BRrBhHOK55XkzgpgLJVSQJVFVglurZKFEbYCUYgCqMtlaVFKBiXyGbk_5h58_zlgiLqtg8WmMR32Q9DpipKgEp3Qu3_ovh_SE02iFIj0NRMyUcsjZX0fgsdKH3zdGv-lKegfe3q0p0d7aeNmzB22Lbo__lcX_waraWoc</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Guo, Peng</creator><creator>Ye, Ke-Yin</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20230407</creationdate><title>Alternating the current direction</title><author>Guo, Peng ; Ye, Ke-Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b231a424dd835f73dc402202288018ce2f43cc876a4cf0464601d579ce77209e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic compounds</topic><topic>Aromatic compounds</topic><topic>Carbon</topic><topic>Carboxylic acids</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Coupling (molecular)</topic><topic>Covalent bonds</topic><topic>Cross coupling</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Transition metals</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Peng</creatorcontrib><creatorcontrib>Ye, Ke-Yin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Peng</au><au>Ye, Ke-Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating the current direction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>380</volume><issue>6640</issue><spage>34</spage><epage>35</epage><pages>34-35</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions ( 1 ) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki et al. ( 2 ) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>37023181</pmid><doi>10.1126/science.adh1837</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2023-04, Vol.380 (6640), p.34-35
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2798708772
source American Association for the Advancement of Science
subjects Aliphatic compounds
Aromatic compounds
Carbon
Carboxylic acids
Chemical bonds
Chemical reactions
Coupling (molecular)
Covalent bonds
Cross coupling
Materials science
Organic chemistry
Organic compounds
Transition metals
Waveforms
title Alternating the current direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20the%20current%20direction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Guo,%20Peng&rft.date=2023-04-07&rft.volume=380&rft.issue=6640&rft.spage=34&rft.epage=35&rft.pages=34-35&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adh1837&rft_dat=%3Cproquest_cross%3E2798708772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804036247&rft_id=info:pmid/37023181&rfr_iscdi=true