Efficient and Effective One-Step Multiview Clustering

Multiview clustering algorithms have attracted intensive attention and achieved superior performance in various fields recently. Despite the great success of multiview clustering methods in realistic applications, we observe that most of them are difficult to apply to large-scale datasets due to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-09, Vol.35 (9), p.12224-12235
Hauptverfasser: Wang, Jun, Tang, Chang, Wan, Zhiguo, Zhang, Wei, Sun, Kun, Zomaya, Albert Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12235
container_issue 9
container_start_page 12224
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Wang, Jun
Tang, Chang
Wan, Zhiguo
Zhang, Wei
Sun, Kun
Zomaya, Albert Y.
description Multiview clustering algorithms have attracted intensive attention and achieved superior performance in various fields recently. Despite the great success of multiview clustering methods in realistic applications, we observe that most of them are difficult to apply to large-scale datasets due to their cubic complexity. Moreover, they usually use a two-stage scheme to obtain the discrete clustering labels, which inevitably causes a suboptimal solution. In light of this, an efficient and effective one-step multiview clustering (E2OMVC) method is proposed to directly obtain clustering indicators with a small-time burden. Specifically, according to the anchor graphs, the smaller similarity graph of each view is constructed, from which the low-dimensional latent features are generated to form the latent partition representation. By introducing a label discretization mechanism, the binary indicator matrix can be directly obtained from the unified partition representation which is formed by fusing all latent partition representations from different views. In addition, by coupling the fusion of all latent information and the clustering task into a joint framework, the two processes can help each other and obtain a better clustering result. Extensive experimental results demonstrate that the proposed method can achieve comparable or better performance than the state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/EEOMVC .
doi_str_mv 10.1109/TNNLS.2023.3253246
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798708316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10070391</ieee_id><sourcerecordid>2798708316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-19cb08f304578c5a95950ed36c72b863eb25bb710b5497883d4f5c684a04dc343</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRrNT-ARHJ0k3qnffMUkp9QG0XreBuSCY3MpKmNZMo_ntTW8W7uQ_OOVw-Qi4ojCkFe7Oaz2fLMQPGx5xJzoQ6ImeMKpYybszx36xfBmQU4xv0pUAqYU_JgGtghkt6RuS0LIMPWLdJVhdJv6FvwwcmixrTZYvb5Kmr-kPAz2RSdbHFJtSv5-SkzKqIo0Mfkue76WrykM4W94-T21nq-4falFqfgyk5CKmNl5mVVgIWXHnNcqM45kzmuaaQS2G1MbwQpfTKiAxE4bngQ3K9z902m_cOY-vWIXqsqqzGTRcd09ZoMJyqXsr2Ut9sYmywdNsmrLPmy1FwO2Luh5jbEXMHYr3p6pDf5Wss_iy_fHrB5V4QEPFfImjglvJvIMFtow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798708316</pqid></control><display><type>article</type><title>Efficient and Effective One-Step Multiview Clustering</title><source>IEEE</source><creator>Wang, Jun ; Tang, Chang ; Wan, Zhiguo ; Zhang, Wei ; Sun, Kun ; Zomaya, Albert Y.</creator><creatorcontrib>Wang, Jun ; Tang, Chang ; Wan, Zhiguo ; Zhang, Wei ; Sun, Kun ; Zomaya, Albert Y.</creatorcontrib><description>Multiview clustering algorithms have attracted intensive attention and achieved superior performance in various fields recently. Despite the great success of multiview clustering methods in realistic applications, we observe that most of them are difficult to apply to large-scale datasets due to their cubic complexity. Moreover, they usually use a two-stage scheme to obtain the discrete clustering labels, which inevitably causes a suboptimal solution. In light of this, an efficient and effective one-step multiview clustering (E2OMVC) method is proposed to directly obtain clustering indicators with a small-time burden. Specifically, according to the anchor graphs, the smaller similarity graph of each view is constructed, from which the low-dimensional latent features are generated to form the latent partition representation. By introducing a label discretization mechanism, the binary indicator matrix can be directly obtained from the unified partition representation which is formed by fusing all latent partition representations from different views. In addition, by coupling the fusion of all latent information and the clustering task into a joint framework, the two processes can help each other and obtain a better clustering result. Extensive experimental results demonstrate that the proposed method can achieve comparable or better performance than the state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/EEOMVC .</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3253246</identifier><identifier>PMID: 37028351</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anchor graph ; Clustering methods ; Data mining ; data representation ; Feature extraction ; feature fusion ; Kernel ; multiview clustering ; Sparse matrices ; Task analysis ; Time complexity</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12224-12235</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-19cb08f304578c5a95950ed36c72b863eb25bb710b5497883d4f5c684a04dc343</citedby><cites>FETCH-LOGICAL-c324t-19cb08f304578c5a95950ed36c72b863eb25bb710b5497883d4f5c684a04dc343</cites><orcidid>0000-0002-3090-1059 ; 0000-0001-5838-9846 ; 0000-0003-1319-1224 ; 0000-0002-9503-3969 ; 0000-0002-8947-9067 ; 0000-0002-6515-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10070391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10070391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Tang, Chang</creatorcontrib><creatorcontrib>Wan, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><title>Efficient and Effective One-Step Multiview Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multiview clustering algorithms have attracted intensive attention and achieved superior performance in various fields recently. Despite the great success of multiview clustering methods in realistic applications, we observe that most of them are difficult to apply to large-scale datasets due to their cubic complexity. Moreover, they usually use a two-stage scheme to obtain the discrete clustering labels, which inevitably causes a suboptimal solution. In light of this, an efficient and effective one-step multiview clustering (E2OMVC) method is proposed to directly obtain clustering indicators with a small-time burden. Specifically, according to the anchor graphs, the smaller similarity graph of each view is constructed, from which the low-dimensional latent features are generated to form the latent partition representation. By introducing a label discretization mechanism, the binary indicator matrix can be directly obtained from the unified partition representation which is formed by fusing all latent partition representations from different views. In addition, by coupling the fusion of all latent information and the clustering task into a joint framework, the two processes can help each other and obtain a better clustering result. Extensive experimental results demonstrate that the proposed method can achieve comparable or better performance than the state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/EEOMVC .</description><subject>Anchor graph</subject><subject>Clustering methods</subject><subject>Data mining</subject><subject>data representation</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Kernel</subject><subject>multiview clustering</subject><subject>Sparse matrices</subject><subject>Task analysis</subject><subject>Time complexity</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRrNT-ARHJ0k3qnffMUkp9QG0XreBuSCY3MpKmNZMo_ntTW8W7uQ_OOVw-Qi4ojCkFe7Oaz2fLMQPGx5xJzoQ6ImeMKpYybszx36xfBmQU4xv0pUAqYU_JgGtghkt6RuS0LIMPWLdJVhdJv6FvwwcmixrTZYvb5Kmr-kPAz2RSdbHFJtSv5-SkzKqIo0Mfkue76WrykM4W94-T21nq-4falFqfgyk5CKmNl5mVVgIWXHnNcqM45kzmuaaQS2G1MbwQpfTKiAxE4bngQ3K9z902m_cOY-vWIXqsqqzGTRcd09ZoMJyqXsr2Ut9sYmywdNsmrLPmy1FwO2Luh5jbEXMHYr3p6pDf5Wss_iy_fHrB5V4QEPFfImjglvJvIMFtow</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Jun</creator><creator>Tang, Chang</creator><creator>Wan, Zhiguo</creator><creator>Zhang, Wei</creator><creator>Sun, Kun</creator><creator>Zomaya, Albert Y.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0001-5838-9846</orcidid><orcidid>https://orcid.org/0000-0003-1319-1224</orcidid><orcidid>https://orcid.org/0000-0002-9503-3969</orcidid><orcidid>https://orcid.org/0000-0002-8947-9067</orcidid><orcidid>https://orcid.org/0000-0002-6515-7696</orcidid></search><sort><creationdate>20240901</creationdate><title>Efficient and Effective One-Step Multiview Clustering</title><author>Wang, Jun ; Tang, Chang ; Wan, Zhiguo ; Zhang, Wei ; Sun, Kun ; Zomaya, Albert Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-19cb08f304578c5a95950ed36c72b863eb25bb710b5497883d4f5c684a04dc343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anchor graph</topic><topic>Clustering methods</topic><topic>Data mining</topic><topic>data representation</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Kernel</topic><topic>multiview clustering</topic><topic>Sparse matrices</topic><topic>Task analysis</topic><topic>Time complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Tang, Chang</creatorcontrib><creatorcontrib>Wan, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Sun, Kun</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jun</au><au>Tang, Chang</au><au>Wan, Zhiguo</au><au>Zhang, Wei</au><au>Sun, Kun</au><au>Zomaya, Albert Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Effective One-Step Multiview Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>35</volume><issue>9</issue><spage>12224</spage><epage>12235</epage><pages>12224-12235</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multiview clustering algorithms have attracted intensive attention and achieved superior performance in various fields recently. Despite the great success of multiview clustering methods in realistic applications, we observe that most of them are difficult to apply to large-scale datasets due to their cubic complexity. Moreover, they usually use a two-stage scheme to obtain the discrete clustering labels, which inevitably causes a suboptimal solution. In light of this, an efficient and effective one-step multiview clustering (E2OMVC) method is proposed to directly obtain clustering indicators with a small-time burden. Specifically, according to the anchor graphs, the smaller similarity graph of each view is constructed, from which the low-dimensional latent features are generated to form the latent partition representation. By introducing a label discretization mechanism, the binary indicator matrix can be directly obtained from the unified partition representation which is formed by fusing all latent partition representations from different views. In addition, by coupling the fusion of all latent information and the clustering task into a joint framework, the two processes can help each other and obtain a better clustering result. Extensive experimental results demonstrate that the proposed method can achieve comparable or better performance than the state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/EEOMVC .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028351</pmid><doi>10.1109/TNNLS.2023.3253246</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0001-5838-9846</orcidid><orcidid>https://orcid.org/0000-0003-1319-1224</orcidid><orcidid>https://orcid.org/0000-0002-9503-3969</orcidid><orcidid>https://orcid.org/0000-0002-8947-9067</orcidid><orcidid>https://orcid.org/0000-0002-6515-7696</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12224-12235
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2798708316
source IEEE
subjects Anchor graph
Clustering methods
Data mining
data representation
Feature extraction
feature fusion
Kernel
multiview clustering
Sparse matrices
Task analysis
Time complexity
title Efficient and Effective One-Step Multiview Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Effective%20One-Step%20Multiview%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Jun&rft.date=2024-09-01&rft.volume=35&rft.issue=9&rft.spage=12224&rft.epage=12235&rft.pages=12224-12235&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3253246&rft_dat=%3Cproquest_RIE%3E2798708316%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798708316&rft_id=info:pmid/37028351&rft_ieee_id=10070391&rfr_iscdi=true