A spectral vanishing viscosity method for stabilizing viscoelastic flows

A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It employs a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accuracy of the discretization. Other features of the method are: a high-order time-splitting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2003-11, Vol.115 (2), p.125-155
Hauptverfasser: Ma, X, Symeonidis, V, Karniadakis, G.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 125
container_title Journal of non-Newtonian fluid mechanics
container_volume 115
creator Ma, X
Symeonidis, V
Karniadakis, G.E
description A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It employs a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accuracy of the discretization. Other features of the method are: a high-order time-splitting scheme, modal spectral element expansions on a single grid, and the use of a finitely extensible non-linear elastic-Peterlin (FENE-P) model. The convergence of the method is established through analytic examples and benchmark problems in two and three dimensions, and unsteady flow past a three-dimensional (3D) ellipsoid is studied at high Reynolds number.
doi_str_mv 10.1016/S0377-0257(03)00172-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27984973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025703001721</els_id><sourcerecordid>27984973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-17c64d912d9e95ce5f4d20bc3c07983b2c8acf2d8204f7f670cc2c1591ee96c33</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIMxG0cVoLp1kZiWlqBUKLtR1SM8kNpJOas60Up_e6QVdejZn8_3n8hFyzugNo0zevlChVE55oa6ouKaUKZ6zA9JjpRI5l4Idkt4vckxOED9oV4WQPTIeZriw0CYTspVpPM58856tPEJE366zuW1nsc5cTBm2ZuqD__4FbDDYeshciF94So6cCWjP9r1P3h7uX0fjfPL8-DQaTnIQsmxzpkAO6orxurJVAbZwg5rTKQigqirFlENpwPG65HTglJOKAnBgRcWsrSQI0SeXu7mLFD-XFls9726xIZjGxiVq3o0ZVGoDFjsQUkRM1ulF8nOT1ppRvfGmt970RoqmQm-9adblLvYLDIIJLpkGPP6FC86pZLTj7nac7b5deZs0grcN2NqnTqiuo_9n0w-3r4KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27984973</pqid></control><display><type>article</type><title>A spectral vanishing viscosity method for stabilizing viscoelastic flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ma, X ; Symeonidis, V ; Karniadakis, G.E</creator><creatorcontrib>Ma, X ; Symeonidis, V ; Karniadakis, G.E</creatorcontrib><description>A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It employs a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accuracy of the discretization. Other features of the method are: a high-order time-splitting scheme, modal spectral element expansions on a single grid, and the use of a finitely extensible non-linear elastic-Peterlin (FENE-P) model. The convergence of the method is established through analytic examples and benchmark problems in two and three dimensions, and unsteady flow past a three-dimensional (3D) ellipsoid is studied at high Reynolds number.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/S0377-0257(03)00172-1</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; FENE-P ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Non-newtonian fluid flows ; Numerical diffusion ; Physics ; Spectral methods ; Unsteady flow</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2003-11, Vol.115 (2), p.125-155</ispartof><rights>2003 Elsevier B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-17c64d912d9e95ce5f4d20bc3c07983b2c8acf2d8204f7f670cc2c1591ee96c33</citedby><cites>FETCH-LOGICAL-c368t-17c64d912d9e95ce5f4d20bc3c07983b2c8acf2d8204f7f670cc2c1591ee96c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0257(03)00172-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15220610$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, X</creatorcontrib><creatorcontrib>Symeonidis, V</creatorcontrib><creatorcontrib>Karniadakis, G.E</creatorcontrib><title>A spectral vanishing viscosity method for stabilizing viscoelastic flows</title><title>Journal of non-Newtonian fluid mechanics</title><description>A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It employs a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accuracy of the discretization. Other features of the method are: a high-order time-splitting scheme, modal spectral element expansions on a single grid, and the use of a finitely extensible non-linear elastic-Peterlin (FENE-P) model. The convergence of the method is established through analytic examples and benchmark problems in two and three dimensions, and unsteady flow past a three-dimensional (3D) ellipsoid is studied at high Reynolds number.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>FENE-P</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-newtonian fluid flows</subject><subject>Numerical diffusion</subject><subject>Physics</subject><subject>Spectral methods</subject><subject>Unsteady flow</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIMxG0cVoLp1kZiWlqBUKLtR1SM8kNpJOas60Up_e6QVdejZn8_3n8hFyzugNo0zevlChVE55oa6ouKaUKZ6zA9JjpRI5l4Idkt4vckxOED9oV4WQPTIeZriw0CYTspVpPM58856tPEJE366zuW1nsc5cTBm2ZuqD__4FbDDYeshciF94So6cCWjP9r1P3h7uX0fjfPL8-DQaTnIQsmxzpkAO6orxurJVAbZwg5rTKQigqirFlENpwPG65HTglJOKAnBgRcWsrSQI0SeXu7mLFD-XFls9726xIZjGxiVq3o0ZVGoDFjsQUkRM1ulF8nOT1ppRvfGmt970RoqmQm-9adblLvYLDIIJLpkGPP6FC86pZLTj7nac7b5deZs0grcN2NqnTqiuo_9n0w-3r4KQ</recordid><startdate>20031120</startdate><enddate>20031120</enddate><creator>Ma, X</creator><creator>Symeonidis, V</creator><creator>Karniadakis, G.E</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20031120</creationdate><title>A spectral vanishing viscosity method for stabilizing viscoelastic flows</title><author>Ma, X ; Symeonidis, V ; Karniadakis, G.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-17c64d912d9e95ce5f4d20bc3c07983b2c8acf2d8204f7f670cc2c1591ee96c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>FENE-P</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-newtonian fluid flows</topic><topic>Numerical diffusion</topic><topic>Physics</topic><topic>Spectral methods</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, X</creatorcontrib><creatorcontrib>Symeonidis, V</creatorcontrib><creatorcontrib>Karniadakis, G.E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, X</au><au>Symeonidis, V</au><au>Karniadakis, G.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spectral vanishing viscosity method for stabilizing viscoelastic flows</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2003-11-20</date><risdate>2003</risdate><volume>115</volume><issue>2</issue><spage>125</spage><epage>155</epage><pages>125-155</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It employs a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accuracy of the discretization. Other features of the method are: a high-order time-splitting scheme, modal spectral element expansions on a single grid, and the use of a finitely extensible non-linear elastic-Peterlin (FENE-P) model. The convergence of the method is established through analytic examples and benchmark problems in two and three dimensions, and unsteady flow past a three-dimensional (3D) ellipsoid is studied at high Reynolds number.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0257(03)00172-1</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2003-11, Vol.115 (2), p.125-155
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_27984973
source ScienceDirect Journals (5 years ago - present)
subjects Computational methods in fluid dynamics
Exact sciences and technology
FENE-P
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Non-newtonian fluid flows
Numerical diffusion
Physics
Spectral methods
Unsteady flow
title A spectral vanishing viscosity method for stabilizing viscoelastic flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spectral%20vanishing%20viscosity%20method%20for%20stabilizing%20viscoelastic%20flows&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Ma,%20X&rft.date=2003-11-20&rft.volume=115&rft.issue=2&rft.spage=125&rft.epage=155&rft.pages=125-155&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/S0377-0257(03)00172-1&rft_dat=%3Cproquest_cross%3E27984973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27984973&rft_id=info:pmid/&rft_els_id=S0377025703001721&rfr_iscdi=true