Oscillations of solutions of vector differential equations of parabolic type with functional arguments
Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing t...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2003-02, Vol.151 (1), p.107-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | Journal of computational and applied mathematics |
container_volume | 151 |
creator | Minchev, Emil Yoshida, Norio |
description | Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of
H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where
H denotes a unit vector. |
doi_str_mv | 10.1016/S0377-0427(02)00740-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27981445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702007409</els_id><sourcerecordid>27981445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VSZo2zUlk8QsW9qCeQ5pONNJt1qRV9t-bdUWPnoaB552XeQg5pnBBgVaXj1AIkQNn4gzYOYDgkMsdMqG1kDkVot4lk19knxzE-AYAlaR8QuwiGtd1enC-j5m3WfTd-Lt8oBl8yFpnLQbsB6e7DN_HP3qlg25850w2rFeYfbrhNbNjbzZAYnV4GZcpFw_JntVdxKOfOSXPtzdPs_t8vrh7mF3Pc8NpOeQ1aglUVsw2QClKkE2DLZNW1rziTVtSTo2wwlaFwVLXRS0EoCmtKYqqRFtMyen27ir49xHjoJYuGkwP9ujHqJiQNeW8TGC5BU3wMQa0ahXcUoe1oqA2VtW3VbVRpoCpb6tKptzJT4GORnc26N64-BfmnFFW0cRdbTlM3344DCp5xt5g60KSqlrv_mn6Ai03ji4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27981445</pqid></control><display><type>article</type><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Minchev, Emil ; Yoshida, Norio</creator><creatorcontrib>Minchev, Emil ; Yoshida, Norio</creatorcontrib><description>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of
H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where
H denotes a unit vector.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00740-9</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Functional arguments ; Mathematical analysis ; Mathematics ; Oscillations ; Parabolic type ; Partial differential equations ; Sciences and techniques of general use ; Vector differential equations</subject><ispartof>Journal of computational and applied mathematics, 2003-02, Vol.151 (1), p.107-117</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</citedby><cites>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(02)00740-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14421261$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minchev, Emil</creatorcontrib><creatorcontrib>Yoshida, Norio</creatorcontrib><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><title>Journal of computational and applied mathematics</title><description>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of
H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where
H denotes a unit vector.</description><subject>Exact sciences and technology</subject><subject>Functional arguments</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Oscillations</subject><subject>Parabolic type</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Vector differential equations</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VSZo2zUlk8QsW9qCeQ5pONNJt1qRV9t-bdUWPnoaB552XeQg5pnBBgVaXj1AIkQNn4gzYOYDgkMsdMqG1kDkVot4lk19knxzE-AYAlaR8QuwiGtd1enC-j5m3WfTd-Lt8oBl8yFpnLQbsB6e7DN_HP3qlg25850w2rFeYfbrhNbNjbzZAYnV4GZcpFw_JntVdxKOfOSXPtzdPs_t8vrh7mF3Pc8NpOeQ1aglUVsw2QClKkE2DLZNW1rziTVtSTo2wwlaFwVLXRS0EoCmtKYqqRFtMyen27ir49xHjoJYuGkwP9ujHqJiQNeW8TGC5BU3wMQa0ahXcUoe1oqA2VtW3VbVRpoCpb6tKptzJT4GORnc26N64-BfmnFFW0cRdbTlM3344DCp5xt5g60KSqlrv_mn6Ai03ji4</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Minchev, Emil</creator><creator>Yoshida, Norio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030201</creationdate><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><author>Minchev, Emil ; Yoshida, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Functional arguments</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Oscillations</topic><topic>Parabolic type</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Vector differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minchev, Emil</creatorcontrib><creatorcontrib>Yoshida, Norio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minchev, Emil</au><au>Yoshida, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-02-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>107</spage><epage>117</epage><pages>107-117</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of
H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where
H denotes a unit vector.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00740-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2003-02, Vol.151 (1), p.107-117 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27981445 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Exact sciences and technology Functional arguments Mathematical analysis Mathematics Oscillations Parabolic type Partial differential equations Sciences and techniques of general use Vector differential equations |
title | Oscillations of solutions of vector differential equations of parabolic type with functional arguments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations%20of%20solutions%20of%20vector%20differential%20equations%20of%20parabolic%20type%20with%20functional%20arguments&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Minchev,%20Emil&rft.date=2003-02-01&rft.volume=151&rft.issue=1&rft.spage=107&rft.epage=117&rft.pages=107-117&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00740-9&rft_dat=%3Cproquest_cross%3E27981445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27981445&rft_id=info:pmid/&rft_els_id=S0377042702007409&rfr_iscdi=true |