Oscillations of solutions of vector differential equations of parabolic type with functional arguments

Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2003-02, Vol.151 (1), p.107-117
Hauptverfasser: Minchev, Emil, Yoshida, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 107
container_title Journal of computational and applied mathematics
container_volume 151
creator Minchev, Emil
Yoshida, Norio
description Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where H denotes a unit vector.
doi_str_mv 10.1016/S0377-0427(02)00740-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27981445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702007409</els_id><sourcerecordid>27981445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VSZo2zUlk8QsW9qCeQ5pONNJt1qRV9t-bdUWPnoaB552XeQg5pnBBgVaXj1AIkQNn4gzYOYDgkMsdMqG1kDkVot4lk19knxzE-AYAlaR8QuwiGtd1enC-j5m3WfTd-Lt8oBl8yFpnLQbsB6e7DN_HP3qlg25850w2rFeYfbrhNbNjbzZAYnV4GZcpFw_JntVdxKOfOSXPtzdPs_t8vrh7mF3Pc8NpOeQ1aglUVsw2QClKkE2DLZNW1rziTVtSTo2wwlaFwVLXRS0EoCmtKYqqRFtMyen27ir49xHjoJYuGkwP9ujHqJiQNeW8TGC5BU3wMQa0ahXcUoe1oqA2VtW3VbVRpoCpb6tKptzJT4GORnc26N64-BfmnFFW0cRdbTlM3344DCp5xt5g60KSqlrv_mn6Ai03ji4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27981445</pqid></control><display><type>article</type><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Minchev, Emil ; Yoshida, Norio</creator><creatorcontrib>Minchev, Emil ; Yoshida, Norio</creatorcontrib><description>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where H denotes a unit vector.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00740-9</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Functional arguments ; Mathematical analysis ; Mathematics ; Oscillations ; Parabolic type ; Partial differential equations ; Sciences and techniques of general use ; Vector differential equations</subject><ispartof>Journal of computational and applied mathematics, 2003-02, Vol.151 (1), p.107-117</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</citedby><cites>FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(02)00740-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14421261$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minchev, Emil</creatorcontrib><creatorcontrib>Yoshida, Norio</creatorcontrib><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><title>Journal of computational and applied mathematics</title><description>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where H denotes a unit vector.</description><subject>Exact sciences and technology</subject><subject>Functional arguments</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Oscillations</subject><subject>Parabolic type</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Vector differential equations</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VSZo2zUlk8QsW9qCeQ5pONNJt1qRV9t-bdUWPnoaB552XeQg5pnBBgVaXj1AIkQNn4gzYOYDgkMsdMqG1kDkVot4lk19knxzE-AYAlaR8QuwiGtd1enC-j5m3WfTd-Lt8oBl8yFpnLQbsB6e7DN_HP3qlg25850w2rFeYfbrhNbNjbzZAYnV4GZcpFw_JntVdxKOfOSXPtzdPs_t8vrh7mF3Pc8NpOeQ1aglUVsw2QClKkE2DLZNW1rziTVtSTo2wwlaFwVLXRS0EoCmtKYqqRFtMyen27ir49xHjoJYuGkwP9ujHqJiQNeW8TGC5BU3wMQa0ahXcUoe1oqA2VtW3VbVRpoCpb6tKptzJT4GORnc26N64-BfmnFFW0cRdbTlM3344DCp5xt5g60KSqlrv_mn6Ai03ji4</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Minchev, Emil</creator><creator>Yoshida, Norio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030201</creationdate><title>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</title><author>Minchev, Emil ; Yoshida, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8ea901962fb011e909bbed29f98464bd5141c7f7f63ce5a838770ec5fc3365ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Functional arguments</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Oscillations</topic><topic>Parabolic type</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Vector differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minchev, Emil</creatorcontrib><creatorcontrib>Yoshida, Norio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minchev, Emil</au><au>Yoshida, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations of solutions of vector differential equations of parabolic type with functional arguments</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-02-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>107</spage><epage>117</epage><pages>107-117</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Vector parabolic differential equations with functional arguments are studied and the oscillations of solutions of boundary value problems are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive solutions of scalar differential inequalities by employing the concept of H-oscillation introduced by Domšlak (see: R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1996), where H denotes a unit vector.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00740-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2003-02, Vol.151 (1), p.107-117
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_27981445
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
Functional arguments
Mathematical analysis
Mathematics
Oscillations
Parabolic type
Partial differential equations
Sciences and techniques of general use
Vector differential equations
title Oscillations of solutions of vector differential equations of parabolic type with functional arguments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations%20of%20solutions%20of%20vector%20differential%20equations%20of%20parabolic%20type%20with%20functional%20arguments&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Minchev,%20Emil&rft.date=2003-02-01&rft.volume=151&rft.issue=1&rft.spage=107&rft.epage=117&rft.pages=107-117&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00740-9&rft_dat=%3Cproquest_cross%3E27981445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27981445&rft_id=info:pmid/&rft_els_id=S0377042702007409&rfr_iscdi=true