Selective bone cell adhesion on formulations containing carbon nanofibers
Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nano...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2003-05, Vol.24 (11), p.1877-1887 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1887 |
---|---|
container_issue | 11 |
container_start_page | 1877 |
container_title | Biomaterials |
container_volume | 24 |
creator | Price, Rachel L Waid, Michael C Haberstroh, Karen M Webster, Thomas J |
description | Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion. |
doi_str_mv | 10.1016/S0142-9612(02)00609-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27977567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961202006099</els_id><sourcerecordid>18742930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouq7-BKUn0UN1kiZNcxIRv0DwsHoOaTrVSDfRpLvgvzfrLnoUBoaB550ZHkKOKJxToPXFDChnpaopOwV2BlCDKtUWmdBGNqVQILbJ5BfZI_spvUOegbNdskdZTQWXzYQ8zHBAO7olFm3wWFgchsJ0b5hc8EWuPsT5YjBjHlNhgx-N886_FtbEHCi88aF3LcZ0QHZ6MyQ83PQpebm9eb6-Lx-f7h6urx5Ly6UYyxqs4KzrWl4ZoGi5QtOpFiowQnKqKDIrTNv0LWJD-4o3Qgg0XNYVAkpTTcnJeu9HDJ8LTKOeu7R623gMi6SZVFKKWv4LZlOcqQoyKNagjSGliL3-iG5u4pemoFey9Y9svTKpIddKtlY5d7w5sGjn2P2lNnYzcLkGMPtYOow6WYfeYudilq674P458Q3atI72</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18742930</pqid></control><display><type>article</type><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</creator><creatorcontrib>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</creatorcontrib><description>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(02)00609-9</identifier><identifier>PMID: 12615478</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>3T3 Cells - cytology ; 3T3 Cells - drug effects ; 3T3 Cells - physiology ; Adhesion ; Animals ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Bone Substitutes - toxicity ; Carbon - chemistry ; Carbon - pharmacology ; Carbon - toxicity ; Carbon Fiber ; Cell Adhesion - drug effects ; Cell Adhesion - physiology ; Cell Count ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - physiology ; Composite ; Crystallization - methods ; Humans ; Materials Testing ; Mice ; Muscle, Smooth - cytology ; Muscle, Smooth - drug effects ; Muscle, Smooth - physiology ; Nanometer ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Orthopedic ; Osteoblast ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - physiology ; Sheep</subject><ispartof>Biomaterials, 2003-05, Vol.24 (11), p.1877-1887</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</citedby><cites>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961202006099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12615478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Rachel L</creatorcontrib><creatorcontrib>Waid, Michael C</creatorcontrib><creatorcontrib>Haberstroh, Karen M</creatorcontrib><creatorcontrib>Webster, Thomas J</creatorcontrib><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</description><subject>3T3 Cells - cytology</subject><subject>3T3 Cells - drug effects</subject><subject>3T3 Cells - physiology</subject><subject>Adhesion</subject><subject>Animals</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Bone Substitutes - toxicity</subject><subject>Carbon - chemistry</subject><subject>Carbon - pharmacology</subject><subject>Carbon - toxicity</subject><subject>Carbon Fiber</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Count</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - physiology</subject><subject>Composite</subject><subject>Crystallization - methods</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - drug effects</subject><subject>Muscle, Smooth - physiology</subject><subject>Nanometer</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Orthopedic</subject><subject>Osteoblast</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - physiology</subject><subject>Sheep</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMouq7-BKUn0UN1kiZNcxIRv0DwsHoOaTrVSDfRpLvgvzfrLnoUBoaB550ZHkKOKJxToPXFDChnpaopOwV2BlCDKtUWmdBGNqVQILbJ5BfZI_spvUOegbNdskdZTQWXzYQ8zHBAO7olFm3wWFgchsJ0b5hc8EWuPsT5YjBjHlNhgx-N886_FtbEHCi88aF3LcZ0QHZ6MyQ83PQpebm9eb6-Lx-f7h6urx5Ly6UYyxqs4KzrWl4ZoGi5QtOpFiowQnKqKDIrTNv0LWJD-4o3Qgg0XNYVAkpTTcnJeu9HDJ8LTKOeu7R623gMi6SZVFKKWv4LZlOcqQoyKNagjSGliL3-iG5u4pemoFey9Y9svTKpIddKtlY5d7w5sGjn2P2lNnYzcLkGMPtYOow6WYfeYudilq674P458Q3atI72</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Price, Rachel L</creator><creator>Waid, Michael C</creator><creator>Haberstroh, Karen M</creator><creator>Webster, Thomas J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20030501</creationdate><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><author>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3T3 Cells - cytology</topic><topic>3T3 Cells - drug effects</topic><topic>3T3 Cells - physiology</topic><topic>Adhesion</topic><topic>Animals</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Bone Substitutes - toxicity</topic><topic>Carbon - chemistry</topic><topic>Carbon - pharmacology</topic><topic>Carbon - toxicity</topic><topic>Carbon Fiber</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Count</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - physiology</topic><topic>Composite</topic><topic>Crystallization - methods</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - drug effects</topic><topic>Muscle, Smooth - physiology</topic><topic>Nanometer</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Orthopedic</topic><topic>Osteoblast</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - physiology</topic><topic>Sheep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Rachel L</creatorcontrib><creatorcontrib>Waid, Michael C</creatorcontrib><creatorcontrib>Haberstroh, Karen M</creatorcontrib><creatorcontrib>Webster, Thomas J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Rachel L</au><au>Waid, Michael C</au><au>Haberstroh, Karen M</au><au>Webster, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective bone cell adhesion on formulations containing carbon nanofibers</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>24</volume><issue>11</issue><spage>1877</spage><epage>1887</epage><pages>1877-1887</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>12615478</pmid><doi>10.1016/S0142-9612(02)00609-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2003-05, Vol.24 (11), p.1877-1887 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_27977567 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 3T3 Cells - cytology 3T3 Cells - drug effects 3T3 Cells - physiology Adhesion Animals Bone Substitutes - chemical synthesis Bone Substitutes - chemistry Bone Substitutes - pharmacology Bone Substitutes - toxicity Carbon - chemistry Carbon - pharmacology Carbon - toxicity Carbon Fiber Cell Adhesion - drug effects Cell Adhesion - physiology Cell Count Cells, Cultured Chondrocytes - cytology Chondrocytes - drug effects Chondrocytes - physiology Composite Crystallization - methods Humans Materials Testing Mice Muscle, Smooth - cytology Muscle, Smooth - drug effects Muscle, Smooth - physiology Nanometer Nanotechnology - instrumentation Nanotechnology - methods Orthopedic Osteoblast Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - physiology Sheep |
title | Selective bone cell adhesion on formulations containing carbon nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20bone%20cell%20adhesion%20on%20formulations%20containing%20carbon%20nanofibers&rft.jtitle=Biomaterials&rft.au=Price,%20Rachel%20L&rft.date=2003-05-01&rft.volume=24&rft.issue=11&rft.spage=1877&rft.epage=1887&rft.pages=1877-1887&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(02)00609-9&rft_dat=%3Cproquest_cross%3E18742930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18742930&rft_id=info:pmid/12615478&rft_els_id=S0142961202006099&rfr_iscdi=true |