Selective bone cell adhesion on formulations containing carbon nanofibers

Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2003-05, Vol.24 (11), p.1877-1887
Hauptverfasser: Price, Rachel L, Waid, Michael C, Haberstroh, Karen M, Webster, Thomas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1887
container_issue 11
container_start_page 1877
container_title Biomaterials
container_volume 24
creator Price, Rachel L
Waid, Michael C
Haberstroh, Karen M
Webster, Thomas J
description Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.
doi_str_mv 10.1016/S0142-9612(02)00609-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27977567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961202006099</els_id><sourcerecordid>18742930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouq7-BKUn0UN1kiZNcxIRv0DwsHoOaTrVSDfRpLvgvzfrLnoUBoaB550ZHkKOKJxToPXFDChnpaopOwV2BlCDKtUWmdBGNqVQILbJ5BfZI_spvUOegbNdskdZTQWXzYQ8zHBAO7olFm3wWFgchsJ0b5hc8EWuPsT5YjBjHlNhgx-N886_FtbEHCi88aF3LcZ0QHZ6MyQ83PQpebm9eb6-Lx-f7h6urx5Ly6UYyxqs4KzrWl4ZoGi5QtOpFiowQnKqKDIrTNv0LWJD-4o3Qgg0XNYVAkpTTcnJeu9HDJ8LTKOeu7R623gMi6SZVFKKWv4LZlOcqQoyKNagjSGliL3-iG5u4pemoFey9Y9svTKpIddKtlY5d7w5sGjn2P2lNnYzcLkGMPtYOow6WYfeYudilq674P458Q3atI72</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18742930</pqid></control><display><type>article</type><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</creator><creatorcontrib>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</creatorcontrib><description>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(02)00609-9</identifier><identifier>PMID: 12615478</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>3T3 Cells - cytology ; 3T3 Cells - drug effects ; 3T3 Cells - physiology ; Adhesion ; Animals ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Bone Substitutes - toxicity ; Carbon - chemistry ; Carbon - pharmacology ; Carbon - toxicity ; Carbon Fiber ; Cell Adhesion - drug effects ; Cell Adhesion - physiology ; Cell Count ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - physiology ; Composite ; Crystallization - methods ; Humans ; Materials Testing ; Mice ; Muscle, Smooth - cytology ; Muscle, Smooth - drug effects ; Muscle, Smooth - physiology ; Nanometer ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Orthopedic ; Osteoblast ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - physiology ; Sheep</subject><ispartof>Biomaterials, 2003-05, Vol.24 (11), p.1877-1887</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</citedby><cites>FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961202006099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12615478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Rachel L</creatorcontrib><creatorcontrib>Waid, Michael C</creatorcontrib><creatorcontrib>Haberstroh, Karen M</creatorcontrib><creatorcontrib>Webster, Thomas J</creatorcontrib><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</description><subject>3T3 Cells - cytology</subject><subject>3T3 Cells - drug effects</subject><subject>3T3 Cells - physiology</subject><subject>Adhesion</subject><subject>Animals</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Bone Substitutes - toxicity</subject><subject>Carbon - chemistry</subject><subject>Carbon - pharmacology</subject><subject>Carbon - toxicity</subject><subject>Carbon Fiber</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Count</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - physiology</subject><subject>Composite</subject><subject>Crystallization - methods</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - drug effects</subject><subject>Muscle, Smooth - physiology</subject><subject>Nanometer</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Orthopedic</subject><subject>Osteoblast</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - physiology</subject><subject>Sheep</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMouq7-BKUn0UN1kiZNcxIRv0DwsHoOaTrVSDfRpLvgvzfrLnoUBoaB550ZHkKOKJxToPXFDChnpaopOwV2BlCDKtUWmdBGNqVQILbJ5BfZI_spvUOegbNdskdZTQWXzYQ8zHBAO7olFm3wWFgchsJ0b5hc8EWuPsT5YjBjHlNhgx-N886_FtbEHCi88aF3LcZ0QHZ6MyQ83PQpebm9eb6-Lx-f7h6urx5Ly6UYyxqs4KzrWl4ZoGi5QtOpFiowQnKqKDIrTNv0LWJD-4o3Qgg0XNYVAkpTTcnJeu9HDJ8LTKOeu7R623gMi6SZVFKKWv4LZlOcqQoyKNagjSGliL3-iG5u4pemoFey9Y9svTKpIddKtlY5d7w5sGjn2P2lNnYzcLkGMPtYOow6WYfeYudilq674P458Q3atI72</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Price, Rachel L</creator><creator>Waid, Michael C</creator><creator>Haberstroh, Karen M</creator><creator>Webster, Thomas J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20030501</creationdate><title>Selective bone cell adhesion on formulations containing carbon nanofibers</title><author>Price, Rachel L ; Waid, Michael C ; Haberstroh, Karen M ; Webster, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-60c542ddb43a01ec49ead9b030a574191e2c5ab8fbee81f348555ea4763e0e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3T3 Cells - cytology</topic><topic>3T3 Cells - drug effects</topic><topic>3T3 Cells - physiology</topic><topic>Adhesion</topic><topic>Animals</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Bone Substitutes - toxicity</topic><topic>Carbon - chemistry</topic><topic>Carbon - pharmacology</topic><topic>Carbon - toxicity</topic><topic>Carbon Fiber</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Count</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - physiology</topic><topic>Composite</topic><topic>Crystallization - methods</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - drug effects</topic><topic>Muscle, Smooth - physiology</topic><topic>Nanometer</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Orthopedic</topic><topic>Osteoblast</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - physiology</topic><topic>Sheep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Rachel L</creatorcontrib><creatorcontrib>Waid, Michael C</creatorcontrib><creatorcontrib>Haberstroh, Karen M</creatorcontrib><creatorcontrib>Webster, Thomas J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Rachel L</au><au>Waid, Michael C</au><au>Haberstroh, Karen M</au><au>Webster, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective bone cell adhesion on formulations containing carbon nanofibers</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>24</volume><issue>11</issue><spage>1877</spage><epage>1887</epage><pages>1877-1887</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Bone cell adhesion on novel carbon nanofibers and polycarbonate urethane/carbon nanofiber (PCU/CNF) composites is investigated in the present in vitro study. Carbon nanofibers have exceptional theoretical mechanical properties (such as high strength to weight ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in physiological bone, suggest strong possibilities for use as an orthopedic/dental implant material. The effects of select properties of carbon fibers (specifically, dimension, surface energy, and chemistry) on osteoblast, fibroblast, chondrocyte, and smooth muscle cell adhesion were determined in the present in vitro study. Results provided evidence that smaller-scale (i.e., nanometer dimension) carbon fibers promoted osteoblast adhesion. Adhesion of other cells was not influenced by carbon fiber dimensions. Also, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. Moreover, greater weight percentages of high surface energy carbon nanofibers in the PCU/CNF composite increased osteoblast adhesion while at the same time decreased fibroblast adhesion.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>12615478</pmid><doi>10.1016/S0142-9612(02)00609-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2003-05, Vol.24 (11), p.1877-1887
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_27977567
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 3T3 Cells - cytology
3T3 Cells - drug effects
3T3 Cells - physiology
Adhesion
Animals
Bone Substitutes - chemical synthesis
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Bone Substitutes - toxicity
Carbon - chemistry
Carbon - pharmacology
Carbon - toxicity
Carbon Fiber
Cell Adhesion - drug effects
Cell Adhesion - physiology
Cell Count
Cells, Cultured
Chondrocytes - cytology
Chondrocytes - drug effects
Chondrocytes - physiology
Composite
Crystallization - methods
Humans
Materials Testing
Mice
Muscle, Smooth - cytology
Muscle, Smooth - drug effects
Muscle, Smooth - physiology
Nanometer
Nanotechnology - instrumentation
Nanotechnology - methods
Orthopedic
Osteoblast
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - physiology
Sheep
title Selective bone cell adhesion on formulations containing carbon nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20bone%20cell%20adhesion%20on%20formulations%20containing%20carbon%20nanofibers&rft.jtitle=Biomaterials&rft.au=Price,%20Rachel%20L&rft.date=2003-05-01&rft.volume=24&rft.issue=11&rft.spage=1877&rft.epage=1887&rft.pages=1877-1887&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(02)00609-9&rft_dat=%3Cproquest_cross%3E18742930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18742930&rft_id=info:pmid/12615478&rft_els_id=S0142961202006099&rfr_iscdi=true