Simulation of organic light emitting diodes: influence of charges localized near the electrodes

In spite of experimental evidence for the formation of charged layers near the electrodes of organic light emitting diodes (OLED), the influence of such layers on the OLED performance has not yet been clarified. This article presents a simulation study of this subject, utilizing the drift-diffusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthetic metals 2003-09, Vol.139 (2), p.425-432
Hauptverfasser: Paasch, G., Nesterov, A., Scheinert, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 2
container_start_page 425
container_title Synthetic metals
container_volume 139
creator Paasch, G.
Nesterov, A.
Scheinert, S.
description In spite of experimental evidence for the formation of charged layers near the electrodes of organic light emitting diodes (OLED), the influence of such layers on the OLED performance has not yet been clarified. This article presents a simulation study of this subject, utilizing the drift-diffusion model. In order to understand the principal mechanism of the influence of such layers, only monolayer devices with unintentional low p-doping are considered. In this case, positively charged layers near the anode or the cathode modify the current voltage characteristics for areal charges above some critical value. Effectively, such areal charges create an additional barrier of a magnitude which depends on the applied bias. A fixed positive areal charge near the anode decreases the current. However, due to the additional bias-dependent barrier, with increasing forward bias one has then a rather strong increase of the current resembling trap assisted space charge limited current. A fixed positive areal charge near the cathode leads to an increase of the build-in potential compared to the ideal thin-layer value which is given by the work function difference of the electrodes. The possibility of compensating the effect of the fixed positive charge with the help of a p-doped layer is discussed.
doi_str_mv 10.1016/S0379-6779(03)00191-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27972144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379677903001917</els_id><sourcerecordid>27972144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6eac4e746dac9b114b101a368509b5b472d084933b754a1fc9d153df65fad87a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCEXRQ_VpEmaxouI-AWCh9VzSJPpbiTbaNIV9Nfb7ooePQ0MzzvD-yB0SMkZJbQ6nxEmVVFJqU4IOyWEKlrILTSh9bBmpSLbaPKL7KK9nF_JSJVigvTML1fB9D52OLY4prnpvMXBzxc9hqXve9_NsfPRQb7AvmvDCjoLI2sXJs0h4xCtCf4LHO7AJNwvAEMA26cxs492WhMyHPzMKXq5vXm-vi8en-4erq8eC8sZ74sKjOUgeeWMVQ2lvBmaGVbVgqhGNFyWjtRcMdZIwQ1trXJUMNdWojWuloZN0fHm7luK7yvIvV76bCEE00FcZV1KJUvK-QCKDWhTzDlBq9-SX5r0qSnRo0691qlHV5owvdap5ZA7-nlg8tC3TaazPv-FBRE1J3TgLjccDG0_PCSdrR-VOZ8GKdpF_8-nbzdGioo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27972144</pqid></control><display><type>article</type><title>Simulation of organic light emitting diodes: influence of charges localized near the electrodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Paasch, G. ; Nesterov, A. ; Scheinert, S.</creator><creatorcontrib>Paasch, G. ; Nesterov, A. ; Scheinert, S.</creatorcontrib><description>In spite of experimental evidence for the formation of charged layers near the electrodes of organic light emitting diodes (OLED), the influence of such layers on the OLED performance has not yet been clarified. This article presents a simulation study of this subject, utilizing the drift-diffusion model. In order to understand the principal mechanism of the influence of such layers, only monolayer devices with unintentional low p-doping are considered. In this case, positively charged layers near the anode or the cathode modify the current voltage characteristics for areal charges above some critical value. Effectively, such areal charges create an additional barrier of a magnitude which depends on the applied bias. A fixed positive areal charge near the anode decreases the current. However, due to the additional bias-dependent barrier, with increasing forward bias one has then a rather strong increase of the current resembling trap assisted space charge limited current. A fixed positive areal charge near the cathode leads to an increase of the build-in potential compared to the ideal thin-layer value which is given by the work function difference of the electrodes. The possibility of compensating the effect of the fixed positive charge with the help of a p-doped layer is discussed.</description><identifier>ISSN: 0379-6779</identifier><identifier>EISSN: 1879-3290</identifier><identifier>DOI: 10.1016/S0379-6779(03)00191-7</identifier><identifier>CODEN: SYMEDZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Charged layer ; Drift-diffusion model ; Electronics ; Exact sciences and technology ; Optoelectronic devices ; Organic light emitting diodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulation</subject><ispartof>Synthetic metals, 2003-09, Vol.139 (2), p.425-432</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6eac4e746dac9b114b101a368509b5b472d084933b754a1fc9d153df65fad87a3</citedby><cites>FETCH-LOGICAL-c434t-6eac4e746dac9b114b101a368509b5b472d084933b754a1fc9d153df65fad87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0379677903001917$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15058401$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paasch, G.</creatorcontrib><creatorcontrib>Nesterov, A.</creatorcontrib><creatorcontrib>Scheinert, S.</creatorcontrib><title>Simulation of organic light emitting diodes: influence of charges localized near the electrodes</title><title>Synthetic metals</title><description>In spite of experimental evidence for the formation of charged layers near the electrodes of organic light emitting diodes (OLED), the influence of such layers on the OLED performance has not yet been clarified. This article presents a simulation study of this subject, utilizing the drift-diffusion model. In order to understand the principal mechanism of the influence of such layers, only monolayer devices with unintentional low p-doping are considered. In this case, positively charged layers near the anode or the cathode modify the current voltage characteristics for areal charges above some critical value. Effectively, such areal charges create an additional barrier of a magnitude which depends on the applied bias. A fixed positive areal charge near the anode decreases the current. However, due to the additional bias-dependent barrier, with increasing forward bias one has then a rather strong increase of the current resembling trap assisted space charge limited current. A fixed positive areal charge near the cathode leads to an increase of the build-in potential compared to the ideal thin-layer value which is given by the work function difference of the electrodes. The possibility of compensating the effect of the fixed positive charge with the help of a p-doped layer is discussed.</description><subject>Applied sciences</subject><subject>Charged layer</subject><subject>Drift-diffusion model</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Optoelectronic devices</subject><subject>Organic light emitting diodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulation</subject><issn>0379-6779</issn><issn>1879-3290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCEXRQ_VpEmaxouI-AWCh9VzSJPpbiTbaNIV9Nfb7ooePQ0MzzvD-yB0SMkZJbQ6nxEmVVFJqU4IOyWEKlrILTSh9bBmpSLbaPKL7KK9nF_JSJVigvTML1fB9D52OLY4prnpvMXBzxc9hqXve9_NsfPRQb7AvmvDCjoLI2sXJs0h4xCtCf4LHO7AJNwvAEMA26cxs492WhMyHPzMKXq5vXm-vi8en-4erq8eC8sZ74sKjOUgeeWMVQ2lvBmaGVbVgqhGNFyWjtRcMdZIwQ1trXJUMNdWojWuloZN0fHm7luK7yvIvV76bCEE00FcZV1KJUvK-QCKDWhTzDlBq9-SX5r0qSnRo0691qlHV5owvdap5ZA7-nlg8tC3TaazPv-FBRE1J3TgLjccDG0_PCSdrR-VOZ8GKdpF_8-nbzdGioo</recordid><startdate>20030905</startdate><enddate>20030905</enddate><creator>Paasch, G.</creator><creator>Nesterov, A.</creator><creator>Scheinert, S.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20030905</creationdate><title>Simulation of organic light emitting diodes: influence of charges localized near the electrodes</title><author>Paasch, G. ; Nesterov, A. ; Scheinert, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6eac4e746dac9b114b101a368509b5b472d084933b754a1fc9d153df65fad87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Charged layer</topic><topic>Drift-diffusion model</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Optoelectronic devices</topic><topic>Organic light emitting diodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paasch, G.</creatorcontrib><creatorcontrib>Nesterov, A.</creatorcontrib><creatorcontrib>Scheinert, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Synthetic metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paasch, G.</au><au>Nesterov, A.</au><au>Scheinert, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of organic light emitting diodes: influence of charges localized near the electrodes</atitle><jtitle>Synthetic metals</jtitle><date>2003-09-05</date><risdate>2003</risdate><volume>139</volume><issue>2</issue><spage>425</spage><epage>432</epage><pages>425-432</pages><issn>0379-6779</issn><eissn>1879-3290</eissn><coden>SYMEDZ</coden><abstract>In spite of experimental evidence for the formation of charged layers near the electrodes of organic light emitting diodes (OLED), the influence of such layers on the OLED performance has not yet been clarified. This article presents a simulation study of this subject, utilizing the drift-diffusion model. In order to understand the principal mechanism of the influence of such layers, only monolayer devices with unintentional low p-doping are considered. In this case, positively charged layers near the anode or the cathode modify the current voltage characteristics for areal charges above some critical value. Effectively, such areal charges create an additional barrier of a magnitude which depends on the applied bias. A fixed positive areal charge near the anode decreases the current. However, due to the additional bias-dependent barrier, with increasing forward bias one has then a rather strong increase of the current resembling trap assisted space charge limited current. A fixed positive areal charge near the cathode leads to an increase of the build-in potential compared to the ideal thin-layer value which is given by the work function difference of the electrodes. The possibility of compensating the effect of the fixed positive charge with the help of a p-doped layer is discussed.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0379-6779(03)00191-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-6779
ispartof Synthetic metals, 2003-09, Vol.139 (2), p.425-432
issn 0379-6779
1879-3290
language eng
recordid cdi_proquest_miscellaneous_27972144
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Charged layer
Drift-diffusion model
Electronics
Exact sciences and technology
Optoelectronic devices
Organic light emitting diodes
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulation
title Simulation of organic light emitting diodes: influence of charges localized near the electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20organic%20light%20emitting%20diodes:%20influence%20of%20charges%20localized%20near%20the%20electrodes&rft.jtitle=Synthetic%20metals&rft.au=Paasch,%20G.&rft.date=2003-09-05&rft.volume=139&rft.issue=2&rft.spage=425&rft.epage=432&rft.pages=425-432&rft.issn=0379-6779&rft.eissn=1879-3290&rft.coden=SYMEDZ&rft_id=info:doi/10.1016/S0379-6779(03)00191-7&rft_dat=%3Cproquest_cross%3E27972144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27972144&rft_id=info:pmid/&rft_els_id=S0379677903001917&rfr_iscdi=true