Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants
The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accura...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2005-08, Vol.42 (4), p.1053-1065 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1065 |
---|---|
container_issue | 4 |
container_start_page | 1053 |
container_title | Canadian geotechnical journal |
container_volume | 42 |
creator | Drnevich, V P Ashmawy, A K Yu, X Sallam, A M |
description | The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accuracy. The TDR method described here makes use of a calibration equation normalized by soil dry density, which involves two soil-dependent constants, a and b. Both a and b have physical significance, with the value of a related to the apparent dielectric constant of the dry density - normalized dry soil solids and the value of b related to the apparent dielectric constant of the pore fluid. From theoretical predictions, typical values of a are around 1.0, and typical values of b are around 9. Practically, the constants a and b are obtained through calibration tests performed in conjunction with standard compaction tests. Experimental study shows that calibration constants fall within the ranges from theoretical predictions. Tests on five soil mixtures provided average values of a = 0.945 and b = 8.76, while 11 clean sands resulted in average values of a = 1.0 and b = 8.5. The study also shows that there are no significant effects of compaction energy on the measured values of a and b. Sensitivity analyses indicate that variations in a and b both cause variations in TDR-determined water content and density, but the variations are typically within acceptable limits for engineering application purpose. Results from TDR tests on simulated field experiments are consistent with the sensitivity analyses.Key words: time domain reflectometry, TDR, calibration constants, water content, dry density, sensitivity. |
doi_str_mv | 10.1139/t05-047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27969235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924297511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-ac4e4bd168c87ad3934bb7d90ed75e982db4ea0de65de17313e1175c7036b1723</originalsourceid><addsrcrecordid>eNp10F1LHDEYBeBQKnSrpX8hCCoUxuZrJjPeiVhbEHpjr0MmeQcjM8maN0vZf2-2LlsQvEoCDyeHQ8hXzi45l8P3wtqGKf2BrLhgfdMxzj6SFWP1LjutPpHPiE-McaWEWJH0EBagPi02RJphmsGVtEDJWzqlTP_aApm6FAvEQm301EPEULY0TRRTmPGKYtn4w7vxsIbod9rZOYzZlpDiLgGLjQVPyNFkZ4Qv-_OY_Plx-3Dzs7n_fffr5vq-sYqJ0linQI2ed73rtfVykGoctR8YeN3C0As_KrDMQ9d64FpyCZzr1mkmu5FrIY_J-WvuOqfnDWAxS0AH82wjpA0aoYduELKt8PQNfEqbHGs3I7gUA-__oYtX5HJCrDOZdQ6LzVvDmdmtburqpq5e5dk-zmIdYMo2uoD_ea3G2lr30C9mlwHBZvd4UPsws_ZThd_eh29_fwEh3J5D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213291835</pqid></control><display><type>article</type><title>Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Drnevich, V P ; Ashmawy, A K ; Yu, X ; Sallam, A M</creator><creatorcontrib>Drnevich, V P ; Ashmawy, A K ; Yu, X ; Sallam, A M</creatorcontrib><description>The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accuracy. The TDR method described here makes use of a calibration equation normalized by soil dry density, which involves two soil-dependent constants, a and b. Both a and b have physical significance, with the value of a related to the apparent dielectric constant of the dry density - normalized dry soil solids and the value of b related to the apparent dielectric constant of the pore fluid. From theoretical predictions, typical values of a are around 1.0, and typical values of b are around 9. Practically, the constants a and b are obtained through calibration tests performed in conjunction with standard compaction tests. Experimental study shows that calibration constants fall within the ranges from theoretical predictions. Tests on five soil mixtures provided average values of a = 0.945 and b = 8.76, while 11 clean sands resulted in average values of a = 1.0 and b = 8.5. The study also shows that there are no significant effects of compaction energy on the measured values of a and b. Sensitivity analyses indicate that variations in a and b both cause variations in TDR-determined water content and density, but the variations are typically within acceptable limits for engineering application purpose. Results from TDR tests on simulated field experiments are consistent with the sensitivity analyses.Key words: time domain reflectometry, TDR, calibration constants, water content, dry density, sensitivity.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/t05-047</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, Canada: NRC Research Press</publisher><subject>Calibration ; Compaction ; Density ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Field tests ; Geotechnology ; Measuring instruments ; Sensitivity analysis ; Soil density ; Soils ; Time series ; Water ; Water content</subject><ispartof>Canadian geotechnical journal, 2005-08, Vol.42 (4), p.1053-1065</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright National Research Council of Canada Aug 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-ac4e4bd168c87ad3934bb7d90ed75e982db4ea0de65de17313e1175c7036b1723</citedby><cites>FETCH-LOGICAL-a402t-ac4e4bd168c87ad3934bb7d90ed75e982db4ea0de65de17313e1175c7036b1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/t05-047$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/t05-047$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,777,781,2919,27905,27906,64407,64985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17230531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drnevich, V P</creatorcontrib><creatorcontrib>Ashmawy, A K</creatorcontrib><creatorcontrib>Yu, X</creatorcontrib><creatorcontrib>Sallam, A M</creatorcontrib><title>Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants</title><title>Canadian geotechnical journal</title><addtitle>Revue canadienne de géotechnique</addtitle><description>The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accuracy. The TDR method described here makes use of a calibration equation normalized by soil dry density, which involves two soil-dependent constants, a and b. Both a and b have physical significance, with the value of a related to the apparent dielectric constant of the dry density - normalized dry soil solids and the value of b related to the apparent dielectric constant of the pore fluid. From theoretical predictions, typical values of a are around 1.0, and typical values of b are around 9. Practically, the constants a and b are obtained through calibration tests performed in conjunction with standard compaction tests. Experimental study shows that calibration constants fall within the ranges from theoretical predictions. Tests on five soil mixtures provided average values of a = 0.945 and b = 8.76, while 11 clean sands resulted in average values of a = 1.0 and b = 8.5. The study also shows that there are no significant effects of compaction energy on the measured values of a and b. Sensitivity analyses indicate that variations in a and b both cause variations in TDR-determined water content and density, but the variations are typically within acceptable limits for engineering application purpose. Results from TDR tests on simulated field experiments are consistent with the sensitivity analyses.Key words: time domain reflectometry, TDR, calibration constants, water content, dry density, sensitivity.</description><subject>Calibration</subject><subject>Compaction</subject><subject>Density</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Field tests</subject><subject>Geotechnology</subject><subject>Measuring instruments</subject><subject>Sensitivity analysis</subject><subject>Soil density</subject><subject>Soils</subject><subject>Time series</subject><subject>Water</subject><subject>Water content</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10F1LHDEYBeBQKnSrpX8hCCoUxuZrJjPeiVhbEHpjr0MmeQcjM8maN0vZf2-2LlsQvEoCDyeHQ8hXzi45l8P3wtqGKf2BrLhgfdMxzj6SFWP1LjutPpHPiE-McaWEWJH0EBagPi02RJphmsGVtEDJWzqlTP_aApm6FAvEQm301EPEULY0TRRTmPGKYtn4w7vxsIbod9rZOYzZlpDiLgGLjQVPyNFkZ4Qv-_OY_Plx-3Dzs7n_fffr5vq-sYqJ0linQI2ed73rtfVykGoctR8YeN3C0As_KrDMQ9d64FpyCZzr1mkmu5FrIY_J-WvuOqfnDWAxS0AH82wjpA0aoYduELKt8PQNfEqbHGs3I7gUA-__oYtX5HJCrDOZdQ6LzVvDmdmtburqpq5e5dk-zmIdYMo2uoD_ea3G2lr30C9mlwHBZvd4UPsws_ZThd_eh29_fwEh3J5D</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Drnevich, V P</creator><creator>Ashmawy, A K</creator><creator>Yu, X</creator><creator>Sallam, A M</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M3G</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20050801</creationdate><title>Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants</title><author>Drnevich, V P ; Ashmawy, A K ; Yu, X ; Sallam, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-ac4e4bd168c87ad3934bb7d90ed75e982db4ea0de65de17313e1175c7036b1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Calibration</topic><topic>Compaction</topic><topic>Density</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Field tests</topic><topic>Geotechnology</topic><topic>Measuring instruments</topic><topic>Sensitivity analysis</topic><topic>Soil density</topic><topic>Soils</topic><topic>Time series</topic><topic>Water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drnevich, V P</creatorcontrib><creatorcontrib>Ashmawy, A K</creatorcontrib><creatorcontrib>Yu, X</creatorcontrib><creatorcontrib>Sallam, A M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drnevich, V P</au><au>Ashmawy, A K</au><au>Yu, X</au><au>Sallam, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants</atitle><jtitle>Canadian geotechnical journal</jtitle><addtitle>Revue canadienne de géotechnique</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>42</volume><issue>4</issue><spage>1053</spage><epage>1065</epage><pages>1053-1065</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accuracy. The TDR method described here makes use of a calibration equation normalized by soil dry density, which involves two soil-dependent constants, a and b. Both a and b have physical significance, with the value of a related to the apparent dielectric constant of the dry density - normalized dry soil solids and the value of b related to the apparent dielectric constant of the pore fluid. From theoretical predictions, typical values of a are around 1.0, and typical values of b are around 9. Practically, the constants a and b are obtained through calibration tests performed in conjunction with standard compaction tests. Experimental study shows that calibration constants fall within the ranges from theoretical predictions. Tests on five soil mixtures provided average values of a = 0.945 and b = 8.76, while 11 clean sands resulted in average values of a = 1.0 and b = 8.5. The study also shows that there are no significant effects of compaction energy on the measured values of a and b. Sensitivity analyses indicate that variations in a and b both cause variations in TDR-determined water content and density, but the variations are typically within acceptable limits for engineering application purpose. Results from TDR tests on simulated field experiments are consistent with the sensitivity analyses.Key words: time domain reflectometry, TDR, calibration constants, water content, dry density, sensitivity.</abstract><cop>Ottawa, Canada</cop><pub>NRC Research Press</pub><doi>10.1139/t05-047</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2005-08, Vol.42 (4), p.1053-1065 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_proquest_miscellaneous_27969235 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | Calibration Compaction Density Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Field tests Geotechnology Measuring instruments Sensitivity analysis Soil density Soils Time series Water Water content |
title | Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20domain%20reflectometry%20for%20water%20content%20and%20density%20of%20soils:%20study%20of%20soil-dependent%20calibration%20constants&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Drnevich,%20V%20P&rft.date=2005-08-01&rft.volume=42&rft.issue=4&rft.spage=1053&rft.epage=1065&rft.pages=1053-1065&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/t05-047&rft_dat=%3Cproquest_cross%3E924297511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213291835&rft_id=info:pmid/&rfr_iscdi=true |