Time domain reflectometry for water content and density of soils: study of soil-dependent calibration constants
The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accura...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2005-08, Vol.42 (4), p.1053-1065 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper studies the soil-dependent calibration constants used for determining water content and density of soil using time domain reflectometry (TDR), specifically, to establish the typical soil calibration values and study the extent of the uncertainty in calibration factors on measurement accuracy. The TDR method described here makes use of a calibration equation normalized by soil dry density, which involves two soil-dependent constants, a and b. Both a and b have physical significance, with the value of a related to the apparent dielectric constant of the dry density - normalized dry soil solids and the value of b related to the apparent dielectric constant of the pore fluid. From theoretical predictions, typical values of a are around 1.0, and typical values of b are around 9. Practically, the constants a and b are obtained through calibration tests performed in conjunction with standard compaction tests. Experimental study shows that calibration constants fall within the ranges from theoretical predictions. Tests on five soil mixtures provided average values of a = 0.945 and b = 8.76, while 11 clean sands resulted in average values of a = 1.0 and b = 8.5. The study also shows that there are no significant effects of compaction energy on the measured values of a and b. Sensitivity analyses indicate that variations in a and b both cause variations in TDR-determined water content and density, but the variations are typically within acceptable limits for engineering application purpose. Results from TDR tests on simulated field experiments are consistent with the sensitivity analyses.Key words: time domain reflectometry, TDR, calibration constants, water content, dry density, sensitivity. |
---|---|
ISSN: | 0008-3674 1208-6010 |
DOI: | 10.1139/t05-047 |