Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation

Two schemes, the first involving ozonation followed by final aerobic biodegradation (phase I experiments), and the second involving initial aerobic biodegradation, followed by ozonation and subsequent final aerobic biodegradation (phase II experiments), were examined for enhanced mineralization of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2006-02, Vol.81 (2), p.115-127
Hauptverfasser: Saroj, Devendra P, Kumar, Arun, Bose, Purnendu, Tare, Vinod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 115
container_title Journal of chemical technology and biotechnology (1986)
container_volume 81
creator Saroj, Devendra P
Kumar, Arun
Bose, Purnendu
Tare, Vinod
description Two schemes, the first involving ozonation followed by final aerobic biodegradation (phase I experiments), and the second involving initial aerobic biodegradation, followed by ozonation and subsequent final aerobic biodegradation (phase II experiments), were examined for enhanced mineralization of refractory model compounds, viz. gallic acid, tannin and lignin. In all cases, and irrespective of the applied scheme, chemical oxygen demand (COD), total organic carbon (TOC), COD/TOC ratio, and specific UV absorbance at 280 nm attributed to the model compounds decreased with application of increasing ozone dose. The residual organic matter remaining after ozonation exhibited enhanced aerobic biodegradability in all cases. Further, in all cases and irrespective of the applied scheme, the overall amount of COD and TOC removed through the combination of ozonation and biodegradation processes increased with increase in ozone dose for all three model compounds, and more than 90% COD removal could be achieved with an ozone dose of 3 mg ozone absorbed per mg initial TOC, as compared with approximately 40% COD removal when no ozone was applied. Treatment by the first scheme resulted in the fraction of starting COD removed through biodegradation decreasing with increase in ozone dose in all cases, while this fraction increased or remained constant during treatment using the second scheme. In the case of tannin and lignin, similar overall COD removal could be achieved at lower ozone doses using scheme II. Due to incorporation of the initial aerobic biodegradation step in scheme II, the ozone requirement for additional mineralization, ie mineralization over and above that achieved by aerobic biodegradation, was also lower than that in scheme I. Copyright © 2005 Society of Chemical Industry
doi_str_mv 10.1002/jctb.1365
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27963600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20283209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-446e79bd9c238b20e072aa9bf659bd27402aab4021da5d88089698cc3974ccc23</originalsourceid><addsrcrecordid>eNqFkM1O3DAYRS3USkwpC97AGyqxCHxxEv8s6YjyIwRCgFhaXxwPGBJ7sDMqw9PjYUbtqurGkW_OubIuIXslHJYA7OjZjO1hWfFmi0xKUKKoOYcvZAKMy4I1otkm31J6BgAuGZ8Qf-Kf0Bs7WD9S5-ngvI3Yu3ccXfA0zGgKg6Uex0WOabSziGYMcUlDfETvDDVhmIeF7xJtc_ge_KdZoI2hzb9bFzr7GLH7jL-TrzPsk93dfHfI_a-Tu-lZcXl9ej49vixMpVRT1DW3QrWdMqySLQMLgiGqdsabnDJRQ762-Sw7bDopQSqupMmyqI3J0g75se6dx_C6sGnUg0vG9j16GxZJM6F4xQH-DwKTFQOVwYM1aGJIKe-g59ENGJe6BL2aXq-m16vpM7u_KcVksM-TeePSXyG_X8iaZ-5ozf12vV3-u1BfTO9-bpqLteHSaN_-GBhfNBeVaPTD1ame3oqLm1t-pXn1AZNFpCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20283209</pqid></control><display><type>article</type><title>Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saroj, Devendra P ; Kumar, Arun ; Bose, Purnendu ; Tare, Vinod</creator><creatorcontrib>Saroj, Devendra P ; Kumar, Arun ; Bose, Purnendu ; Tare, Vinod</creatorcontrib><description>Two schemes, the first involving ozonation followed by final aerobic biodegradation (phase I experiments), and the second involving initial aerobic biodegradation, followed by ozonation and subsequent final aerobic biodegradation (phase II experiments), were examined for enhanced mineralization of refractory model compounds, viz. gallic acid, tannin and lignin. In all cases, and irrespective of the applied scheme, chemical oxygen demand (COD), total organic carbon (TOC), COD/TOC ratio, and specific UV absorbance at 280 nm attributed to the model compounds decreased with application of increasing ozone dose. The residual organic matter remaining after ozonation exhibited enhanced aerobic biodegradability in all cases. Further, in all cases and irrespective of the applied scheme, the overall amount of COD and TOC removed through the combination of ozonation and biodegradation processes increased with increase in ozone dose for all three model compounds, and more than 90% COD removal could be achieved with an ozone dose of 3 mg ozone absorbed per mg initial TOC, as compared with approximately 40% COD removal when no ozone was applied. Treatment by the first scheme resulted in the fraction of starting COD removed through biodegradation decreasing with increase in ozone dose in all cases, while this fraction increased or remained constant during treatment using the second scheme. In the case of tannin and lignin, similar overall COD removal could be achieved at lower ozone doses using scheme II. Due to incorporation of the initial aerobic biodegradation step in scheme II, the ozone requirement for additional mineralization, ie mineralization over and above that achieved by aerobic biodegradation, was also lower than that in scheme I. Copyright © 2005 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.1365</identifier><identifier>CODEN: JCTBDC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; biodegradation ; Biological and medical sciences ; Biotechnology ; Chemical engineering ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; gallic acid ; lignin ; Methods. Procedures. Technologies ; Others ; ozonation ; Reactors ; tannin ; Various methods and equipments</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2006-02, Vol.81 (2), p.115-127</ispartof><rights>Copyright © 2005 Society of Chemical Industry</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-446e79bd9c238b20e072aa9bf659bd27402aab4021da5d88089698cc3974ccc23</citedby><cites>FETCH-LOGICAL-c3995-446e79bd9c238b20e072aa9bf659bd27402aab4021da5d88089698cc3974ccc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.1365$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.1365$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17407846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saroj, Devendra P</creatorcontrib><creatorcontrib>Kumar, Arun</creatorcontrib><creatorcontrib>Bose, Purnendu</creatorcontrib><creatorcontrib>Tare, Vinod</creatorcontrib><title>Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>Two schemes, the first involving ozonation followed by final aerobic biodegradation (phase I experiments), and the second involving initial aerobic biodegradation, followed by ozonation and subsequent final aerobic biodegradation (phase II experiments), were examined for enhanced mineralization of refractory model compounds, viz. gallic acid, tannin and lignin. In all cases, and irrespective of the applied scheme, chemical oxygen demand (COD), total organic carbon (TOC), COD/TOC ratio, and specific UV absorbance at 280 nm attributed to the model compounds decreased with application of increasing ozone dose. The residual organic matter remaining after ozonation exhibited enhanced aerobic biodegradability in all cases. Further, in all cases and irrespective of the applied scheme, the overall amount of COD and TOC removed through the combination of ozonation and biodegradation processes increased with increase in ozone dose for all three model compounds, and more than 90% COD removal could be achieved with an ozone dose of 3 mg ozone absorbed per mg initial TOC, as compared with approximately 40% COD removal when no ozone was applied. Treatment by the first scheme resulted in the fraction of starting COD removed through biodegradation decreasing with increase in ozone dose in all cases, while this fraction increased or remained constant during treatment using the second scheme. In the case of tannin and lignin, similar overall COD removal could be achieved at lower ozone doses using scheme II. Due to incorporation of the initial aerobic biodegradation step in scheme II, the ozone requirement for additional mineralization, ie mineralization over and above that achieved by aerobic biodegradation, was also lower than that in scheme I. Copyright © 2005 Society of Chemical Industry</description><subject>Applied sciences</subject><subject>biodegradation</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gallic acid</subject><subject>lignin</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>ozonation</subject><subject>Reactors</subject><subject>tannin</subject><subject>Various methods and equipments</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAYRS3USkwpC97AGyqxCHxxEv8s6YjyIwRCgFhaXxwPGBJ7sDMqw9PjYUbtqurGkW_OubIuIXslHJYA7OjZjO1hWfFmi0xKUKKoOYcvZAKMy4I1otkm31J6BgAuGZ8Qf-Kf0Bs7WD9S5-ngvI3Yu3ccXfA0zGgKg6Uex0WOabSziGYMcUlDfETvDDVhmIeF7xJtc_ge_KdZoI2hzb9bFzr7GLH7jL-TrzPsk93dfHfI_a-Tu-lZcXl9ej49vixMpVRT1DW3QrWdMqySLQMLgiGqdsabnDJRQ762-Sw7bDopQSqupMmyqI3J0g75se6dx_C6sGnUg0vG9j16GxZJM6F4xQH-DwKTFQOVwYM1aGJIKe-g59ENGJe6BL2aXq-m16vpM7u_KcVksM-TeePSXyG_X8iaZ-5ozf12vV3-u1BfTO9-bpqLteHSaN_-GBhfNBeVaPTD1ame3oqLm1t-pXn1AZNFpCs</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Saroj, Devendra P</creator><creator>Kumar, Arun</creator><creator>Bose, Purnendu</creator><creator>Tare, Vinod</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>200602</creationdate><title>Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation</title><author>Saroj, Devendra P ; Kumar, Arun ; Bose, Purnendu ; Tare, Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-446e79bd9c238b20e072aa9bf659bd27402aab4021da5d88089698cc3974ccc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>biodegradation</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gallic acid</topic><topic>lignin</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>ozonation</topic><topic>Reactors</topic><topic>tannin</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saroj, Devendra P</creatorcontrib><creatorcontrib>Kumar, Arun</creatorcontrib><creatorcontrib>Bose, Purnendu</creatorcontrib><creatorcontrib>Tare, Vinod</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saroj, Devendra P</au><au>Kumar, Arun</au><au>Bose, Purnendu</au><au>Tare, Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2006-02</date><risdate>2006</risdate><volume>81</volume><issue>2</issue><spage>115</spage><epage>127</epage><pages>115-127</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><coden>JCTBDC</coden><abstract>Two schemes, the first involving ozonation followed by final aerobic biodegradation (phase I experiments), and the second involving initial aerobic biodegradation, followed by ozonation and subsequent final aerobic biodegradation (phase II experiments), were examined for enhanced mineralization of refractory model compounds, viz. gallic acid, tannin and lignin. In all cases, and irrespective of the applied scheme, chemical oxygen demand (COD), total organic carbon (TOC), COD/TOC ratio, and specific UV absorbance at 280 nm attributed to the model compounds decreased with application of increasing ozone dose. The residual organic matter remaining after ozonation exhibited enhanced aerobic biodegradability in all cases. Further, in all cases and irrespective of the applied scheme, the overall amount of COD and TOC removed through the combination of ozonation and biodegradation processes increased with increase in ozone dose for all three model compounds, and more than 90% COD removal could be achieved with an ozone dose of 3 mg ozone absorbed per mg initial TOC, as compared with approximately 40% COD removal when no ozone was applied. Treatment by the first scheme resulted in the fraction of starting COD removed through biodegradation decreasing with increase in ozone dose in all cases, while this fraction increased or remained constant during treatment using the second scheme. In the case of tannin and lignin, similar overall COD removal could be achieved at lower ozone doses using scheme II. Due to incorporation of the initial aerobic biodegradation step in scheme II, the ozone requirement for additional mineralization, ie mineralization over and above that achieved by aerobic biodegradation, was also lower than that in scheme I. Copyright © 2005 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.1365</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2006-02, Vol.81 (2), p.115-127
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_miscellaneous_27963600
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
biodegradation
Biological and medical sciences
Biotechnology
Chemical engineering
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
gallic acid
lignin
Methods. Procedures. Technologies
Others
ozonation
Reactors
tannin
Various methods and equipments
title Enhancement in mineralization of some natural refractory organic compounds by ozonation-aerobic biodegradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20in%20mineralization%20of%20some%20natural%20refractory%20organic%20compounds%20by%20ozonation-aerobic%20biodegradation&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Saroj,%20Devendra%20P&rft.date=2006-02&rft.volume=81&rft.issue=2&rft.spage=115&rft.epage=127&rft.pages=115-127&rft.issn=0268-2575&rft.eissn=1097-4660&rft.coden=JCTBDC&rft_id=info:doi/10.1002/jctb.1365&rft_dat=%3Cproquest_cross%3E20283209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20283209&rft_id=info:pmid/&rfr_iscdi=true