Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography

Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in sever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-05, Vol.42 (5), p.1462-1471
Hauptverfasser: Tehrani, Ali K. Z., Ashikuzzaman, Md, Rivaz, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1471
container_issue 5
container_start_page 1462
container_title IEEE transactions on medical imaging
container_volume 42
creator Tehrani, Ali K. Z.
Ashikuzzaman, Md
Rivaz, Hassan
description Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we, first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.
doi_str_mv 10.1109/TMI.2022.3230635
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2796161022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992016</ieee_id><sourcerecordid>2808836057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-20cf271c502f058bb17baf44f2617aed2c5e7f2c3a66ec209a78c8879fb16be83</originalsourceid><addsrcrecordid>eNpdkc-LEzEYhoMobl29C4IMePEy9Usy-TFHKasWKordgreQSb90Z0lnxmRGGP96U1tX8JKE5HlfPvIQ8pLCklKo391-Xi8ZMLbkjIPk4hFZUCF0yUT1_TFZAFO6BJDsijxL6R6AVgLqp-SKK6CikmJB5o0dMdpQbMdo265YH-2h7Q7FLp3WLQZfbqcB48824b6w3b74ejen1tkQ5mLdpaGN-X7Vd-lPfkxFLtl16V_mGx6mYGP7K59vgk1jf4h2uJufkyfehoQvLvs12X24uV19KjdfPq5X7zel45UaSwbOM0WdAOZB6KahqrG-qjyTVFncMydQeea4lRIdg9oq7bRWtW-obFDza_L23DvE_seEaTTHNjkMwXbYT8kwVUsqaf7FjL75D73vp9jl6QzToDWXIFSm4Ey52KcU0ZshtkcbZ0PBnLSYrMWctJiLlhx5fSmemiPuHwJ_PWTg1RloEfHhua5rBlTy3yOwkqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808836057</pqid></control><display><type>article</type><title>Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography</title><source>IEEE Electronic Library (IEL)</source><creator>Tehrani, Ali K. Z. ; Ashikuzzaman, Md ; Rivaz, Hassan</creator><creatorcontrib>Tehrani, Ali K. Z. ; Ashikuzzaman, Md ; Rivaz, Hassan</creatorcontrib><description>Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we, first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3230635</identifier><identifier>PMID: 37015465</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer Simulation ; Computer vision ; Convolutional neural network ; effective Poisson's ratio ; Elasticity Imaging Techniques - methods ; Elastography ; Estimation ; Image enhancement ; Imaging ; In vivo methods and tests ; Inverse problems ; Lateral displacement ; lateral strain ; Neural networks ; Neural Networks, Computer ; Phantoms, Imaging ; Poisson's ratio ; Radio frequency ; Strain ; Training ; Ultrasonic imaging ; ultrasound elastography ; unsupervised training</subject><ispartof>IEEE transactions on medical imaging, 2023-05, Vol.42 (5), p.1462-1471</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-20cf271c502f058bb17baf44f2617aed2c5e7f2c3a66ec209a78c8879fb16be83</citedby><cites>FETCH-LOGICAL-c347t-20cf271c502f058bb17baf44f2617aed2c5e7f2c3a66ec209a78c8879fb16be83</cites><orcidid>0000-0002-2686-8989 ; 0000-0001-5800-3034 ; 0000-0001-9785-435X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9992016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37015465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tehrani, Ali K. Z.</creatorcontrib><creatorcontrib>Ashikuzzaman, Md</creatorcontrib><creatorcontrib>Rivaz, Hassan</creatorcontrib><title>Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we, first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Simulation</subject><subject>Computer vision</subject><subject>Convolutional neural network</subject><subject>effective Poisson's ratio</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Elastography</subject><subject>Estimation</subject><subject>Image enhancement</subject><subject>Imaging</subject><subject>In vivo methods and tests</subject><subject>Inverse problems</subject><subject>Lateral displacement</subject><subject>lateral strain</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Phantoms, Imaging</subject><subject>Poisson's ratio</subject><subject>Radio frequency</subject><subject>Strain</subject><subject>Training</subject><subject>Ultrasonic imaging</subject><subject>ultrasound elastography</subject><subject>unsupervised training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc-LEzEYhoMobl29C4IMePEy9Usy-TFHKasWKordgreQSb90Z0lnxmRGGP96U1tX8JKE5HlfPvIQ8pLCklKo391-Xi8ZMLbkjIPk4hFZUCF0yUT1_TFZAFO6BJDsijxL6R6AVgLqp-SKK6CikmJB5o0dMdpQbMdo265YH-2h7Q7FLp3WLQZfbqcB48824b6w3b74ejen1tkQ5mLdpaGN-X7Vd-lPfkxFLtl16V_mGx6mYGP7K59vgk1jf4h2uJufkyfehoQvLvs12X24uV19KjdfPq5X7zel45UaSwbOM0WdAOZB6KahqrG-qjyTVFncMydQeea4lRIdg9oq7bRWtW-obFDza_L23DvE_seEaTTHNjkMwXbYT8kwVUsqaf7FjL75D73vp9jl6QzToDWXIFSm4Ey52KcU0ZshtkcbZ0PBnLSYrMWctJiLlhx5fSmemiPuHwJ_PWTg1RloEfHhua5rBlTy3yOwkqs</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tehrani, Ali K. Z.</creator><creator>Ashikuzzaman, Md</creator><creator>Rivaz, Hassan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2686-8989</orcidid><orcidid>https://orcid.org/0000-0001-5800-3034</orcidid><orcidid>https://orcid.org/0000-0001-9785-435X</orcidid></search><sort><creationdate>20230501</creationdate><title>Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography</title><author>Tehrani, Ali K. Z. ; Ashikuzzaman, Md ; Rivaz, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-20cf271c502f058bb17baf44f2617aed2c5e7f2c3a66ec209a78c8879fb16be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Simulation</topic><topic>Computer vision</topic><topic>Convolutional neural network</topic><topic>effective Poisson's ratio</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Elastography</topic><topic>Estimation</topic><topic>Image enhancement</topic><topic>Imaging</topic><topic>In vivo methods and tests</topic><topic>Inverse problems</topic><topic>Lateral displacement</topic><topic>lateral strain</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Phantoms, Imaging</topic><topic>Poisson's ratio</topic><topic>Radio frequency</topic><topic>Strain</topic><topic>Training</topic><topic>Ultrasonic imaging</topic><topic>ultrasound elastography</topic><topic>unsupervised training</topic><toplevel>online_resources</toplevel><creatorcontrib>Tehrani, Ali K. Z.</creatorcontrib><creatorcontrib>Ashikuzzaman, Md</creatorcontrib><creatorcontrib>Rivaz, Hassan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tehrani, Ali K. Z.</au><au>Ashikuzzaman, Md</au><au>Rivaz, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>42</volume><issue>5</issue><spage>1462</spage><epage>1471</epage><pages>1462-1471</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we, first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37015465</pmid><doi>10.1109/TMI.2022.3230635</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2686-8989</orcidid><orcidid>https://orcid.org/0000-0001-5800-3034</orcidid><orcidid>https://orcid.org/0000-0001-9785-435X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-05, Vol.42 (5), p.1462-1471
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2796161022
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Computer Simulation
Computer vision
Convolutional neural network
effective Poisson's ratio
Elasticity Imaging Techniques - methods
Elastography
Estimation
Image enhancement
Imaging
In vivo methods and tests
Inverse problems
Lateral displacement
lateral strain
Neural networks
Neural Networks, Computer
Phantoms, Imaging
Poisson's ratio
Radio frequency
Strain
Training
Ultrasonic imaging
ultrasound elastography
unsupervised training
title Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Strain%20Imaging%20Using%20Self-Supervised%20and%20Physically%20Inspired%20Constraints%20in%20Unsupervised%20Regularized%20Elastography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tehrani,%20Ali%20K.%20Z.&rft.date=2023-05-01&rft.volume=42&rft.issue=5&rft.spage=1462&rft.epage=1471&rft.pages=1462-1471&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3230635&rft_dat=%3Cproquest_RIE%3E2808836057%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808836057&rft_id=info:pmid/37015465&rft_ieee_id=9992016&rfr_iscdi=true