Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid

The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2023-05, Vol.77, p.100-117
Hauptverfasser: Pauli, Sarah, Kohlstedt, Michael, Lamber, Jessica, Weiland, Fabia, Becker, Judith, Wittmann, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 100
container_title Metabolic engineering
container_volume 77
creator Pauli, Sarah
Kohlstedt, Michael
Lamber, Jessica
Weiland, Fabia
Becker, Judith
Wittmann, Christoph
description The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 180 mmol mol−1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol−1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L−1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid. •Engineered C. glutamicum selectively forms high-value l-pipecolic acid.•The previously overlooked lat-pathway displays the best synthetic route.•C. glutamicum PIA-10B produces 93 g L−1l-pipecolic acid in a fed-batch process.•The development allows the production of GRAS-designated l-pipecolic acid.
doi_str_mv 10.1016/j.ymben.2023.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2796159804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717623000472</els_id><sourcerecordid>2796159804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4fb3f6aed75add5de95d591659ab331e1f3967824c40b5651d06b0931f154ab13</originalsourceid><addsrcrecordid>eNqFUU2P0zAQjRCIXRZ-ARLykUuKHcdOc-CAKr6kShyAs-XYk9SVP4LtVJvfxR_E3ZY9gjSSRzPvzYzfq6rXBG8IJvzdcbO6AfymwQ3d4BKYP6luCe553ZFt-_Qx7_hN9SKlI8aEsJ48r24o7ylhjN9Wv7-vKYNLyEGWQ7BGIfCT8QDR-Akt8xSlhoR2Ia4eBqlyaSwOTXbJ0hlV0jFElMCCyuYE6GCmQ23hBBbNMeilVINHYUT5AEgdTJQW6bhMpQtqiamQpddIgbV1IeTrGLjPEVywawa0r2czg3o4TiqjX1bPRmkTvLq-d9XPTx9_7L7U-2-fv-4-7GvV0i7X7TjQkUvQHZNaMw090-X7nPVyoJQAGWnPu23TqhYPjDOiMR9wEWYkrJUDoXfV28vcctevBVIWzqTzodJDWJIoEtJuy5uu-S-06XpetN_itkDpBapiSCnCKOZonIyrIFicjRVH8WCsOBsrcAnMC-vNdcEyONCPnL9OFsD7CwCKIicDUSRlwCvQpgidhQ7mnwv-AKXgunk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2796159804</pqid></control><display><type>article</type><title>Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pauli, Sarah ; Kohlstedt, Michael ; Lamber, Jessica ; Weiland, Fabia ; Becker, Judith ; Wittmann, Christoph</creator><creatorcontrib>Pauli, Sarah ; Kohlstedt, Michael ; Lamber, Jessica ; Weiland, Fabia ; Becker, Judith ; Wittmann, Christoph</creatorcontrib><description>The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 180 mmol mol−1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol−1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L−1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid. •Engineered C. glutamicum selectively forms high-value l-pipecolic acid.•The previously overlooked lat-pathway displays the best synthetic route.•C. glutamicum PIA-10B produces 93 g L−1l-pipecolic acid in a fed-batch process.•The development allows the production of GRAS-designated l-pipecolic acid.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2023.03.006</identifier><identifier>PMID: 36931556</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>agrochemicals ; biotransformation ; Chemical priming agent ; commercialization ; Corynebacterium glutamicum ; Corynebacterium glutamicum - metabolism ; Drug precursor ; drugs ; Extremolyte ; family ; Fermentation ; glucose ; Glucose - genetics ; Glucose - metabolism ; GRAS ; heterologous gene expression ; l-Lysine ; l-lysine 6-Aminotransferase ; l-lysine 6-Dehydrogenase ; l-Pipecolic acid ; lysine ; Lysine - genetics ; Metabolic Engineering ; metabolites ; Metabolome ; mutants ; NAD ; NADH ; NADP ; NADPH ; Oxidoreductases - metabolism ; Prodrugs - metabolism ; proteome ; Redox metabolism ; Sustainable production ; Transcriptome</subject><ispartof>Metabolic engineering, 2023-05, Vol.77, p.100-117</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4fb3f6aed75add5de95d591659ab331e1f3967824c40b5651d06b0931f154ab13</citedby><cites>FETCH-LOGICAL-c437t-4fb3f6aed75add5de95d591659ab331e1f3967824c40b5651d06b0931f154ab13</cites><orcidid>0000-0002-7952-985X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2023.03.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36931556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauli, Sarah</creatorcontrib><creatorcontrib>Kohlstedt, Michael</creatorcontrib><creatorcontrib>Lamber, Jessica</creatorcontrib><creatorcontrib>Weiland, Fabia</creatorcontrib><creatorcontrib>Becker, Judith</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><title>Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 180 mmol mol−1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol−1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L−1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid. •Engineered C. glutamicum selectively forms high-value l-pipecolic acid.•The previously overlooked lat-pathway displays the best synthetic route.•C. glutamicum PIA-10B produces 93 g L−1l-pipecolic acid in a fed-batch process.•The development allows the production of GRAS-designated l-pipecolic acid.</description><subject>agrochemicals</subject><subject>biotransformation</subject><subject>Chemical priming agent</subject><subject>commercialization</subject><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Drug precursor</subject><subject>drugs</subject><subject>Extremolyte</subject><subject>family</subject><subject>Fermentation</subject><subject>glucose</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>GRAS</subject><subject>heterologous gene expression</subject><subject>l-Lysine</subject><subject>l-lysine 6-Aminotransferase</subject><subject>l-lysine 6-Dehydrogenase</subject><subject>l-Pipecolic acid</subject><subject>lysine</subject><subject>Lysine - genetics</subject><subject>Metabolic Engineering</subject><subject>metabolites</subject><subject>Metabolome</subject><subject>mutants</subject><subject>NAD</subject><subject>NADH</subject><subject>NADP</subject><subject>NADPH</subject><subject>Oxidoreductases - metabolism</subject><subject>Prodrugs - metabolism</subject><subject>proteome</subject><subject>Redox metabolism</subject><subject>Sustainable production</subject><subject>Transcriptome</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU2P0zAQjRCIXRZ-ARLykUuKHcdOc-CAKr6kShyAs-XYk9SVP4LtVJvfxR_E3ZY9gjSSRzPvzYzfq6rXBG8IJvzdcbO6AfymwQ3d4BKYP6luCe553ZFt-_Qx7_hN9SKlI8aEsJ48r24o7ylhjN9Wv7-vKYNLyEGWQ7BGIfCT8QDR-Akt8xSlhoR2Ia4eBqlyaSwOTXbJ0hlV0jFElMCCyuYE6GCmQ23hBBbNMeilVINHYUT5AEgdTJQW6bhMpQtqiamQpddIgbV1IeTrGLjPEVywawa0r2czg3o4TiqjX1bPRmkTvLq-d9XPTx9_7L7U-2-fv-4-7GvV0i7X7TjQkUvQHZNaMw090-X7nPVyoJQAGWnPu23TqhYPjDOiMR9wEWYkrJUDoXfV28vcctevBVIWzqTzodJDWJIoEtJuy5uu-S-06XpetN_itkDpBapiSCnCKOZonIyrIFicjRVH8WCsOBsrcAnMC-vNdcEyONCPnL9OFsD7CwCKIicDUSRlwCvQpgidhQ7mnwv-AKXgunk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Pauli, Sarah</creator><creator>Kohlstedt, Michael</creator><creator>Lamber, Jessica</creator><creator>Weiland, Fabia</creator><creator>Becker, Judith</creator><creator>Wittmann, Christoph</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7952-985X</orcidid></search><sort><creationdate>20230501</creationdate><title>Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid</title><author>Pauli, Sarah ; Kohlstedt, Michael ; Lamber, Jessica ; Weiland, Fabia ; Becker, Judith ; Wittmann, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4fb3f6aed75add5de95d591659ab331e1f3967824c40b5651d06b0931f154ab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>agrochemicals</topic><topic>biotransformation</topic><topic>Chemical priming agent</topic><topic>commercialization</topic><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Drug precursor</topic><topic>drugs</topic><topic>Extremolyte</topic><topic>family</topic><topic>Fermentation</topic><topic>glucose</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>GRAS</topic><topic>heterologous gene expression</topic><topic>l-Lysine</topic><topic>l-lysine 6-Aminotransferase</topic><topic>l-lysine 6-Dehydrogenase</topic><topic>l-Pipecolic acid</topic><topic>lysine</topic><topic>Lysine - genetics</topic><topic>Metabolic Engineering</topic><topic>metabolites</topic><topic>Metabolome</topic><topic>mutants</topic><topic>NAD</topic><topic>NADH</topic><topic>NADP</topic><topic>NADPH</topic><topic>Oxidoreductases - metabolism</topic><topic>Prodrugs - metabolism</topic><topic>proteome</topic><topic>Redox metabolism</topic><topic>Sustainable production</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauli, Sarah</creatorcontrib><creatorcontrib>Kohlstedt, Michael</creatorcontrib><creatorcontrib>Lamber, Jessica</creatorcontrib><creatorcontrib>Weiland, Fabia</creatorcontrib><creatorcontrib>Becker, Judith</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauli, Sarah</au><au>Kohlstedt, Michael</au><au>Lamber, Jessica</au><au>Weiland, Fabia</au><au>Becker, Judith</au><au>Wittmann, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>77</volume><spage>100</spage><epage>117</epage><pages>100-117</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 180 mmol mol−1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol−1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L−1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid. •Engineered C. glutamicum selectively forms high-value l-pipecolic acid.•The previously overlooked lat-pathway displays the best synthetic route.•C. glutamicum PIA-10B produces 93 g L−1l-pipecolic acid in a fed-batch process.•The development allows the production of GRAS-designated l-pipecolic acid.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>36931556</pmid><doi>10.1016/j.ymben.2023.03.006</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7952-985X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2023-05, Vol.77, p.100-117
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_2796159804
source MEDLINE; Elsevier ScienceDirect Journals
subjects agrochemicals
biotransformation
Chemical priming agent
commercialization
Corynebacterium glutamicum
Corynebacterium glutamicum - metabolism
Drug precursor
drugs
Extremolyte
family
Fermentation
glucose
Glucose - genetics
Glucose - metabolism
GRAS
heterologous gene expression
l-Lysine
l-lysine 6-Aminotransferase
l-lysine 6-Dehydrogenase
l-Pipecolic acid
lysine
Lysine - genetics
Metabolic Engineering
metabolites
Metabolome
mutants
NAD
NADH
NADP
NADPH
Oxidoreductases - metabolism
Prodrugs - metabolism
proteome
Redox metabolism
Sustainable production
Transcriptome
title Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20metabolic%20engineering%20upgrades%20Corynebacterium%20glutamicum%20for%20selective%20high-level%20production%20of%20the%20chiral%20drug%20precursor%20and%20cell-protective%20extremolyte%20L-pipecolic%20acid&rft.jtitle=Metabolic%20engineering&rft.au=Pauli,%20Sarah&rft.date=2023-05-01&rft.volume=77&rft.spage=100&rft.epage=117&rft.pages=100-117&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2023.03.006&rft_dat=%3Cproquest_cross%3E2796159804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2796159804&rft_id=info:pmid/36931556&rft_els_id=S1096717623000472&rfr_iscdi=true