Guanine Quantum Defects in Carbon Nanotubes for Biosensing

Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-04, Vol.14 (14), p.3483-3490
Hauptverfasser: Galonska, Phillip, Mohr, Jennifer M., Schrage, C. Alexander, Schnitzler, Lena, Kruss, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3490
container_issue 14
container_start_page 3483
container_title The journal of physical chemistry letters
container_volume 14
creator Galonska, Phillip
Mohr, Jennifer M.
Schrage, C. Alexander
Schnitzler, Lena
Kruss, Sebastian
description Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.
doi_str_mv 10.1021/acs.jpclett.3c00358
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795359798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795359798</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwBEgoI0taX-o4ZoNylSoQEsyW7ZygVIldbGfg7Qk0ICam_wz_RedD6JTgOcGULLSN883WtpDSnFmMGS_30JTIZZkLUvL9P_cEHcW4wbiQuBSHaMIEJoRyOUUXd712jYPsedDUd9k11GBTzBqXrXQw3mWP2vnUG4hZ7UN21fgILjbu7Rgd1LqNcDLqDL3e3rys7vP1093D6nKda7bkKa801oJhTllNAURRUG6AgWS8LovCUEGGQcmLiltmtSSW0aqWzBguDNGYshk63_Vug3_vISbVNdFC22oHvo-KCskZl0KWg5XtrDb4GAPUahuaTocPRbD6gqYGaGqEpkZoQ-psHOhNB9Vv5ofSYFjsDN9p3wc3_Ptv5SdJYXqe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795359798</pqid></control><display><type>article</type><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</creator><creatorcontrib>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</creatorcontrib><description>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by &gt;70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c00358</identifier><identifier>PMID: 37011259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; DNA ; Fluorescence ; Guanine - chemistry ; Nanotubes, Carbon - chemistry ; Physical Insights into Light Interacting with Matter</subject><ispartof>The journal of physical chemistry letters, 2023-04, Vol.14 (14), p.3483-3490</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</citedby><cites>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</cites><orcidid>0000-0003-0638-9822 ; 0000-0001-5781-4919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c00358$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c00358$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37011259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galonska, Phillip</creatorcontrib><creatorcontrib>Mohr, Jennifer M.</creatorcontrib><creatorcontrib>Schrage, C. Alexander</creatorcontrib><creatorcontrib>Schnitzler, Lena</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by &gt;70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</description><subject>Biosensing Techniques</subject><subject>DNA</subject><subject>Fluorescence</subject><subject>Guanine - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physical Insights into Light Interacting with Matter</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwBEgoI0taX-o4ZoNylSoQEsyW7ZygVIldbGfg7Qk0ICam_wz_RedD6JTgOcGULLSN883WtpDSnFmMGS_30JTIZZkLUvL9P_cEHcW4wbiQuBSHaMIEJoRyOUUXd712jYPsedDUd9k11GBTzBqXrXQw3mWP2vnUG4hZ7UN21fgILjbu7Rgd1LqNcDLqDL3e3rys7vP1093D6nKda7bkKa801oJhTllNAURRUG6AgWS8LovCUEGGQcmLiltmtSSW0aqWzBguDNGYshk63_Vug3_vISbVNdFC22oHvo-KCskZl0KWg5XtrDb4GAPUahuaTocPRbD6gqYGaGqEpkZoQ-psHOhNB9Vv5ofSYFjsDN9p3wc3_Ptv5SdJYXqe</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Galonska, Phillip</creator><creator>Mohr, Jennifer M.</creator><creator>Schrage, C. Alexander</creator><creator>Schnitzler, Lena</creator><creator>Kruss, Sebastian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0638-9822</orcidid><orcidid>https://orcid.org/0000-0001-5781-4919</orcidid></search><sort><creationdate>20230413</creationdate><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><author>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>DNA</topic><topic>Fluorescence</topic><topic>Guanine - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physical Insights into Light Interacting with Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galonska, Phillip</creatorcontrib><creatorcontrib>Mohr, Jennifer M.</creatorcontrib><creatorcontrib>Schrage, C. Alexander</creatorcontrib><creatorcontrib>Schnitzler, Lena</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galonska, Phillip</au><au>Mohr, Jennifer M.</au><au>Schrage, C. Alexander</au><au>Schnitzler, Lena</au><au>Kruss, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>14</volume><issue>14</issue><spage>3483</spage><epage>3490</epage><pages>3483-3490</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by &gt;70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37011259</pmid><doi>10.1021/acs.jpclett.3c00358</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0638-9822</orcidid><orcidid>https://orcid.org/0000-0001-5781-4919</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-04, Vol.14 (14), p.3483-3490
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2795359798
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques
DNA
Fluorescence
Guanine - chemistry
Nanotubes, Carbon - chemistry
Physical Insights into Light Interacting with Matter
title Guanine Quantum Defects in Carbon Nanotubes for Biosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanine%20Quantum%20Defects%20in%20Carbon%20Nanotubes%20for%20Biosensing&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Galonska,%20Phillip&rft.date=2023-04-13&rft.volume=14&rft.issue=14&rft.spage=3483&rft.epage=3490&rft.pages=3483-3490&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c00358&rft_dat=%3Cproquest_cross%3E2795359798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795359798&rft_id=info:pmid/37011259&rfr_iscdi=true