Guanine Quantum Defects in Carbon Nanotubes for Biosensing
Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SW...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-04, Vol.14 (14), p.3483-3490 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3490 |
---|---|
container_issue | 14 |
container_start_page | 3483 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Galonska, Phillip Mohr, Jennifer M. Schrage, C. Alexander Schnitzler, Lena Kruss, Sebastian |
description | Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform. |
doi_str_mv | 10.1021/acs.jpclett.3c00358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795359798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795359798</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwBEgoI0taX-o4ZoNylSoQEsyW7ZygVIldbGfg7Qk0ICam_wz_RedD6JTgOcGULLSN883WtpDSnFmMGS_30JTIZZkLUvL9P_cEHcW4wbiQuBSHaMIEJoRyOUUXd712jYPsedDUd9k11GBTzBqXrXQw3mWP2vnUG4hZ7UN21fgILjbu7Rgd1LqNcDLqDL3e3rys7vP1093D6nKda7bkKa801oJhTllNAURRUG6AgWS8LovCUEGGQcmLiltmtSSW0aqWzBguDNGYshk63_Vug3_vISbVNdFC22oHvo-KCskZl0KWg5XtrDb4GAPUahuaTocPRbD6gqYGaGqEpkZoQ-psHOhNB9Vv5ofSYFjsDN9p3wc3_Ptv5SdJYXqe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795359798</pqid></control><display><type>article</type><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</creator><creatorcontrib>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</creatorcontrib><description>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c00358</identifier><identifier>PMID: 37011259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; DNA ; Fluorescence ; Guanine - chemistry ; Nanotubes, Carbon - chemistry ; Physical Insights into Light Interacting with Matter</subject><ispartof>The journal of physical chemistry letters, 2023-04, Vol.14 (14), p.3483-3490</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</citedby><cites>FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</cites><orcidid>0000-0003-0638-9822 ; 0000-0001-5781-4919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c00358$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c00358$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37011259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galonska, Phillip</creatorcontrib><creatorcontrib>Mohr, Jennifer M.</creatorcontrib><creatorcontrib>Schrage, C. Alexander</creatorcontrib><creatorcontrib>Schnitzler, Lena</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</description><subject>Biosensing Techniques</subject><subject>DNA</subject><subject>Fluorescence</subject><subject>Guanine - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Physical Insights into Light Interacting with Matter</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwBEgoI0taX-o4ZoNylSoQEsyW7ZygVIldbGfg7Qk0ICam_wz_RedD6JTgOcGULLSN883WtpDSnFmMGS_30JTIZZkLUvL9P_cEHcW4wbiQuBSHaMIEJoRyOUUXd712jYPsedDUd9k11GBTzBqXrXQw3mWP2vnUG4hZ7UN21fgILjbu7Rgd1LqNcDLqDL3e3rys7vP1093D6nKda7bkKa801oJhTllNAURRUG6AgWS8LovCUEGGQcmLiltmtSSW0aqWzBguDNGYshk63_Vug3_vISbVNdFC22oHvo-KCskZl0KWg5XtrDb4GAPUahuaTocPRbD6gqYGaGqEpkZoQ-psHOhNB9Vv5ofSYFjsDN9p3wc3_Ptv5SdJYXqe</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Galonska, Phillip</creator><creator>Mohr, Jennifer M.</creator><creator>Schrage, C. Alexander</creator><creator>Schnitzler, Lena</creator><creator>Kruss, Sebastian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0638-9822</orcidid><orcidid>https://orcid.org/0000-0001-5781-4919</orcidid></search><sort><creationdate>20230413</creationdate><title>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</title><author>Galonska, Phillip ; Mohr, Jennifer M. ; Schrage, C. Alexander ; Schnitzler, Lena ; Kruss, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-da0a730523f2ee76625be3e935f866b271fec956d5c3ca91c32df93bb57b1a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>DNA</topic><topic>Fluorescence</topic><topic>Guanine - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Physical Insights into Light Interacting with Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galonska, Phillip</creatorcontrib><creatorcontrib>Mohr, Jennifer M.</creatorcontrib><creatorcontrib>Schrage, C. Alexander</creatorcontrib><creatorcontrib>Schnitzler, Lena</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galonska, Phillip</au><au>Mohr, Jennifer M.</au><au>Schrage, C. Alexander</au><au>Schnitzler, Lena</au><au>Kruss, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanine Quantum Defects in Carbon Nanotubes for Biosensing</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>14</volume><issue>14</issue><spage>3483</spage><epage>3490</epage><pages>3483-3490</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E 11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37011259</pmid><doi>10.1021/acs.jpclett.3c00358</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0638-9822</orcidid><orcidid>https://orcid.org/0000-0001-5781-4919</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-04, Vol.14 (14), p.3483-3490 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2795359798 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biosensing Techniques DNA Fluorescence Guanine - chemistry Nanotubes, Carbon - chemistry Physical Insights into Light Interacting with Matter |
title | Guanine Quantum Defects in Carbon Nanotubes for Biosensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanine%20Quantum%20Defects%20in%20Carbon%20Nanotubes%20for%20Biosensing&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Galonska,%20Phillip&rft.date=2023-04-13&rft.volume=14&rft.issue=14&rft.spage=3483&rft.epage=3490&rft.pages=3483-3490&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c00358&rft_dat=%3Cproquest_cross%3E2795359798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795359798&rft_id=info:pmid/37011259&rfr_iscdi=true |