Engineered yeast for the efficient hydrolysis of polylactic acid
[Display omitted] •Recombinant S. cerevisiae produce high titres of fungal PLA hydrolases.•Crude supernatant effectively hydrolyses PLA emulsions, powders and films.•Enzyme hydrolysis resulted in release of 9.44 g/L lactic acid from 10 g/L PLA film.•Extreme fragmentation and more than 40% weight los...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2023-06, Vol.378, p.129008-129008, Article 129008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129008 |
---|---|
container_issue | |
container_start_page | 129008 |
container_title | Bioresource technology |
container_volume | 378 |
creator | Myburgh, Marthinus W. Favaro, Lorenzo van Zyl, Willem H. Viljoen-Bloom, Marinda |
description | [Display omitted]
•Recombinant S. cerevisiae produce high titres of fungal PLA hydrolases.•Crude supernatant effectively hydrolyses PLA emulsions, powders and films.•Enzyme hydrolysis resulted in release of 9.44 g/L lactic acid from 10 g/L PLA film.•Extreme fragmentation and more than 40% weight loss of PLA films observed.•Enzyme initially targets amorphous fraction before hydrolysis of crystalline region.
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling. |
doi_str_mv | 10.1016/j.biortech.2023.129008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795359494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423004340</els_id><sourcerecordid>2795359494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6488c4f189ddb121e752fd34bc8b75b10c4eb3bbeb537a7d12911e44c0a4b0a73</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC5WXbBL8SpzsiipeUiU2sLb8GFNXaVLsFKl_T6q0bFnNLM6dqzkIzSnJKaHlwyY3oYs92HXOCOM5ZTUh1QWa0kryjNWyvERTUpckqwomJugmpQ0hhFPJrtGES0JpJfgULZ7ar9ACRHD4ADr12HcR92vA4H2wAdoerw8uds0hhYQ7j3fD2mjbB4u1De4WXXndJLg7zRn6fH76WL5mq_eXt-XjKrOCln1WiqqywtOqds5QRkEWzDsujK2MLAwlVoDhxoApuNTSDf9QCkJYooUhWvIZuh_v7mL3vYfUq21IFppGt9Dtk2KyLnhRi1oMaDmiNnYpRfBqF8NWx4OiRB3tqY0621NHe2q0NwTnp4692YL7i511DcBiBGD49CdAVOmoyIILEWyvXBf-6_gFqzyD8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795359494</pqid></control><display><type>article</type><title>Engineered yeast for the efficient hydrolysis of polylactic acid</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Myburgh, Marthinus W. ; Favaro, Lorenzo ; van Zyl, Willem H. ; Viljoen-Bloom, Marinda</creator><creatorcontrib>Myburgh, Marthinus W. ; Favaro, Lorenzo ; van Zyl, Willem H. ; Viljoen-Bloom, Marinda</creatorcontrib><description>[Display omitted]
•Recombinant S. cerevisiae produce high titres of fungal PLA hydrolases.•Crude supernatant effectively hydrolyses PLA emulsions, powders and films.•Enzyme hydrolysis resulted in release of 9.44 g/L lactic acid from 10 g/L PLA film.•Extreme fragmentation and more than 40% weight loss of PLA films observed.•Enzyme initially targets amorphous fraction before hydrolysis of crystalline region.
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.129008</identifier><identifier>PMID: 37011843</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioplastic recycling ; Bioplastics ; Enzyme hydrolysis ; Hydrolysis ; Plastic waste ; Polyesters ; Polylactic acid ; Saccharomyces cerevisiae - genetics</subject><ispartof>Bioresource technology, 2023-06, Vol.378, p.129008-129008, Article 129008</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6488c4f189ddb121e752fd34bc8b75b10c4eb3bbeb537a7d12911e44c0a4b0a73</citedby><cites>FETCH-LOGICAL-c416t-6488c4f189ddb121e752fd34bc8b75b10c4eb3bbeb537a7d12911e44c0a4b0a73</cites><orcidid>0000-0002-5650-4422 ; 0000-0002-6485-3446 ; 0000-0002-4825-2392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2023.129008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37011843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myburgh, Marthinus W.</creatorcontrib><creatorcontrib>Favaro, Lorenzo</creatorcontrib><creatorcontrib>van Zyl, Willem H.</creatorcontrib><creatorcontrib>Viljoen-Bloom, Marinda</creatorcontrib><title>Engineered yeast for the efficient hydrolysis of polylactic acid</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•Recombinant S. cerevisiae produce high titres of fungal PLA hydrolases.•Crude supernatant effectively hydrolyses PLA emulsions, powders and films.•Enzyme hydrolysis resulted in release of 9.44 g/L lactic acid from 10 g/L PLA film.•Extreme fragmentation and more than 40% weight loss of PLA films observed.•Enzyme initially targets amorphous fraction before hydrolysis of crystalline region.
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.</description><subject>Bioplastic recycling</subject><subject>Bioplastics</subject><subject>Enzyme hydrolysis</subject><subject>Hydrolysis</subject><subject>Plastic waste</subject><subject>Polyesters</subject><subject>Polylactic acid</subject><subject>Saccharomyces cerevisiae - genetics</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwC5WXbBL8SpzsiipeUiU2sLb8GFNXaVLsFKl_T6q0bFnNLM6dqzkIzSnJKaHlwyY3oYs92HXOCOM5ZTUh1QWa0kryjNWyvERTUpckqwomJugmpQ0hhFPJrtGES0JpJfgULZ7ar9ACRHD4ADr12HcR92vA4H2wAdoerw8uds0hhYQ7j3fD2mjbB4u1De4WXXndJLg7zRn6fH76WL5mq_eXt-XjKrOCln1WiqqywtOqds5QRkEWzDsujK2MLAwlVoDhxoApuNTSDf9QCkJYooUhWvIZuh_v7mL3vYfUq21IFppGt9Dtk2KyLnhRi1oMaDmiNnYpRfBqF8NWx4OiRB3tqY0621NHe2q0NwTnp4692YL7i511DcBiBGD49CdAVOmoyIILEWyvXBf-6_gFqzyD8Q</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Myburgh, Marthinus W.</creator><creator>Favaro, Lorenzo</creator><creator>van Zyl, Willem H.</creator><creator>Viljoen-Bloom, Marinda</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5650-4422</orcidid><orcidid>https://orcid.org/0000-0002-6485-3446</orcidid><orcidid>https://orcid.org/0000-0002-4825-2392</orcidid></search><sort><creationdate>202306</creationdate><title>Engineered yeast for the efficient hydrolysis of polylactic acid</title><author>Myburgh, Marthinus W. ; Favaro, Lorenzo ; van Zyl, Willem H. ; Viljoen-Bloom, Marinda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6488c4f189ddb121e752fd34bc8b75b10c4eb3bbeb537a7d12911e44c0a4b0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioplastic recycling</topic><topic>Bioplastics</topic><topic>Enzyme hydrolysis</topic><topic>Hydrolysis</topic><topic>Plastic waste</topic><topic>Polyesters</topic><topic>Polylactic acid</topic><topic>Saccharomyces cerevisiae - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myburgh, Marthinus W.</creatorcontrib><creatorcontrib>Favaro, Lorenzo</creatorcontrib><creatorcontrib>van Zyl, Willem H.</creatorcontrib><creatorcontrib>Viljoen-Bloom, Marinda</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myburgh, Marthinus W.</au><au>Favaro, Lorenzo</au><au>van Zyl, Willem H.</au><au>Viljoen-Bloom, Marinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered yeast for the efficient hydrolysis of polylactic acid</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>378</volume><spage>129008</spage><epage>129008</epage><pages>129008-129008</pages><artnum>129008</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Recombinant S. cerevisiae produce high titres of fungal PLA hydrolases.•Crude supernatant effectively hydrolyses PLA emulsions, powders and films.•Enzyme hydrolysis resulted in release of 9.44 g/L lactic acid from 10 g/L PLA film.•Extreme fragmentation and more than 40% weight loss of PLA films observed.•Enzyme initially targets amorphous fraction before hydrolysis of crystalline region.
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37011843</pmid><doi>10.1016/j.biortech.2023.129008</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5650-4422</orcidid><orcidid>https://orcid.org/0000-0002-6485-3446</orcidid><orcidid>https://orcid.org/0000-0002-4825-2392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2023-06, Vol.378, p.129008-129008, Article 129008 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2795359494 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Bioplastic recycling Bioplastics Enzyme hydrolysis Hydrolysis Plastic waste Polyesters Polylactic acid Saccharomyces cerevisiae - genetics |
title | Engineered yeast for the efficient hydrolysis of polylactic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20yeast%20for%20the%20efficient%20hydrolysis%20of%20polylactic%20acid&rft.jtitle=Bioresource%20technology&rft.au=Myburgh,%20Marthinus%20W.&rft.date=2023-06&rft.volume=378&rft.spage=129008&rft.epage=129008&rft.pages=129008-129008&rft.artnum=129008&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.129008&rft_dat=%3Cproquest_cross%3E2795359494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795359494&rft_id=info:pmid/37011843&rft_els_id=S0960852423004340&rfr_iscdi=true |