Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review

Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2023-07, Vol.44 (13), p.e2300060-n/a
Hauptverfasser: Tao, Kangkang, Sun, Gaohui, Feng, Chengcheng, Liu, Guangmin, Li, Yahui, Chen, Rongrong, Wang, Jun, Han, Shihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e2300060
container_title Macromolecular rapid communications.
container_volume 44
creator Tao, Kangkang
Sun, Gaohui
Feng, Chengcheng
Liu, Guangmin
Li, Yahui
Chen, Rongrong
Wang, Jun
Han, Shihui
description Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film. This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.
doi_str_mv 10.1002/marc.202300060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795357942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795357942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</originalsourceid><addsrcrecordid>eNqFkL1uFDEURi0EIj_QUiJLNDSzXPvOjMflakMAKYgohIrC8o6vE0eemWDvJNqOd8gb8iQ42hAkGtzYxfmOrMPYKwELASDfDTb1CwkSAaCFJ2xfNFJUqKV6Wt4gZSUQ2z12kPNVQboa5HO2hwpE3aLYZ9-_btLcb-ZkIz-iHC5GbkfHzyhTMV_y0zRdJMqZT56fX1IabIxbvppGV1bhhvjpFLdhCI74cYgD__Xzji_L_CbQ7Qv2zNuY6eXDfci-Hb8_X32sTr58-LRanlQ9KoSqQYcgvPfWW-qod63urG9cpzVppbq1WztdK6tsjZYA0fm1gA7aWgjotcVD9nbnvU7Tj5nyxgwh9xSjHWmas5FKN9goXcuCvvkHvZrmNJbfGdlhOa1EUajFjurTlHMib65TKKW3RoC5z27us5vH7GXw-kE7rwdyj_ifzgXQO-A2RNr-R2c-L89Wf-W_AaWvju8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833336231</pqid></control><display><type>article</type><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</creator><creatorcontrib>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</creatorcontrib><description>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film. This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202300060</identifier><identifier>PMID: 37014631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conduction ; Conduction heating ; Conduction model ; Electronic equipment ; Fillers ; liquid crystalline ; Liquid crystals ; polyimide films ; Reviews ; Structural design ; Structural engineering ; thermal conduction networks ; Thermal conductivity ; thermal management</subject><ispartof>Macromolecular rapid communications., 2023-07, Vol.44 (13), p.e2300060-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</citedby><cites>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</cites><orcidid>0000-0003-1177-6712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.202300060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.202300060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Kangkang</creatorcontrib><creatorcontrib>Sun, Gaohui</creatorcontrib><creatorcontrib>Feng, Chengcheng</creatorcontrib><creatorcontrib>Liu, Guangmin</creatorcontrib><creatorcontrib>Li, Yahui</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Shihui</creatorcontrib><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film. This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</description><subject>Conduction</subject><subject>Conduction heating</subject><subject>Conduction model</subject><subject>Electronic equipment</subject><subject>Fillers</subject><subject>liquid crystalline</subject><subject>Liquid crystals</subject><subject>polyimide films</subject><subject>Reviews</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>thermal conduction networks</subject><subject>Thermal conductivity</subject><subject>thermal management</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1uFDEURi0EIj_QUiJLNDSzXPvOjMflakMAKYgohIrC8o6vE0eemWDvJNqOd8gb8iQ42hAkGtzYxfmOrMPYKwELASDfDTb1CwkSAaCFJ2xfNFJUqKV6Wt4gZSUQ2z12kPNVQboa5HO2hwpE3aLYZ9-_btLcb-ZkIz-iHC5GbkfHzyhTMV_y0zRdJMqZT56fX1IabIxbvppGV1bhhvjpFLdhCI74cYgD__Xzji_L_CbQ7Qv2zNuY6eXDfci-Hb8_X32sTr58-LRanlQ9KoSqQYcgvPfWW-qod63urG9cpzVppbq1WztdK6tsjZYA0fm1gA7aWgjotcVD9nbnvU7Tj5nyxgwh9xSjHWmas5FKN9goXcuCvvkHvZrmNJbfGdlhOa1EUajFjurTlHMib65TKKW3RoC5z27us5vH7GXw-kE7rwdyj_ifzgXQO-A2RNr-R2c-L89Wf-W_AaWvju8</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Tao, Kangkang</creator><creator>Sun, Gaohui</creator><creator>Feng, Chengcheng</creator><creator>Liu, Guangmin</creator><creator>Li, Yahui</creator><creator>Chen, Rongrong</creator><creator>Wang, Jun</creator><creator>Han, Shihui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1177-6712</orcidid></search><sort><creationdate>202307</creationdate><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><author>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conduction</topic><topic>Conduction heating</topic><topic>Conduction model</topic><topic>Electronic equipment</topic><topic>Fillers</topic><topic>liquid crystalline</topic><topic>Liquid crystals</topic><topic>polyimide films</topic><topic>Reviews</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>thermal conduction networks</topic><topic>Thermal conductivity</topic><topic>thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Kangkang</creatorcontrib><creatorcontrib>Sun, Gaohui</creatorcontrib><creatorcontrib>Feng, Chengcheng</creatorcontrib><creatorcontrib>Liu, Guangmin</creatorcontrib><creatorcontrib>Li, Yahui</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Shihui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Kangkang</au><au>Sun, Gaohui</au><au>Feng, Chengcheng</au><au>Liu, Guangmin</au><au>Li, Yahui</au><au>Chen, Rongrong</au><au>Wang, Jun</au><au>Han, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2023-07</date><risdate>2023</risdate><volume>44</volume><issue>13</issue><spage>e2300060</spage><epage>n/a</epage><pages>e2300060-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film. This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37014631</pmid><doi>10.1002/marc.202300060</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1177-6712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2023-07, Vol.44 (13), p.e2300060-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2795357942
source Wiley Online Library Journals Frontfile Complete
subjects Conduction
Conduction heating
Conduction model
Electronic equipment
Fillers
liquid crystalline
Liquid crystals
polyimide films
Reviews
Structural design
Structural engineering
thermal conduction networks
Thermal conductivity
thermal management
title Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Design%20and%20Research%20Progress%20of%20Thermally%20Conductive%20Polyimide%20Film%20%E2%80%93%20A%20Review&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Tao,%20Kangkang&rft.date=2023-07&rft.volume=44&rft.issue=13&rft.spage=e2300060&rft.epage=n/a&rft.pages=e2300060-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202300060&rft_dat=%3Cproquest_cross%3E2795357942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833336231&rft_id=info:pmid/37014631&rfr_iscdi=true