Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review
Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal con...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2023-07, Vol.44 (13), p.e2300060-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e2300060 |
container_title | Macromolecular rapid communications. |
container_volume | 44 |
creator | Tao, Kangkang Sun, Gaohui Feng, Chengcheng Liu, Guangmin Li, Yahui Chen, Rongrong Wang, Jun Han, Shihui |
description | Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.
This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed. |
doi_str_mv | 10.1002/marc.202300060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795357942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795357942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</originalsourceid><addsrcrecordid>eNqFkL1uFDEURi0EIj_QUiJLNDSzXPvOjMflakMAKYgohIrC8o6vE0eemWDvJNqOd8gb8iQ42hAkGtzYxfmOrMPYKwELASDfDTb1CwkSAaCFJ2xfNFJUqKV6Wt4gZSUQ2z12kPNVQboa5HO2hwpE3aLYZ9-_btLcb-ZkIz-iHC5GbkfHzyhTMV_y0zRdJMqZT56fX1IabIxbvppGV1bhhvjpFLdhCI74cYgD__Xzji_L_CbQ7Qv2zNuY6eXDfci-Hb8_X32sTr58-LRanlQ9KoSqQYcgvPfWW-qod63urG9cpzVppbq1WztdK6tsjZYA0fm1gA7aWgjotcVD9nbnvU7Tj5nyxgwh9xSjHWmas5FKN9goXcuCvvkHvZrmNJbfGdlhOa1EUajFjurTlHMib65TKKW3RoC5z27us5vH7GXw-kE7rwdyj_ifzgXQO-A2RNr-R2c-L89Wf-W_AaWvju8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833336231</pqid></control><display><type>article</type><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</creator><creatorcontrib>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</creatorcontrib><description>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.
This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202300060</identifier><identifier>PMID: 37014631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conduction ; Conduction heating ; Conduction model ; Electronic equipment ; Fillers ; liquid crystalline ; Liquid crystals ; polyimide films ; Reviews ; Structural design ; Structural engineering ; thermal conduction networks ; Thermal conductivity ; thermal management</subject><ispartof>Macromolecular rapid communications., 2023-07, Vol.44 (13), p.e2300060-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</citedby><cites>FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</cites><orcidid>0000-0003-1177-6712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.202300060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.202300060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Kangkang</creatorcontrib><creatorcontrib>Sun, Gaohui</creatorcontrib><creatorcontrib>Feng, Chengcheng</creatorcontrib><creatorcontrib>Liu, Guangmin</creatorcontrib><creatorcontrib>Li, Yahui</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Shihui</creatorcontrib><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.
This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</description><subject>Conduction</subject><subject>Conduction heating</subject><subject>Conduction model</subject><subject>Electronic equipment</subject><subject>Fillers</subject><subject>liquid crystalline</subject><subject>Liquid crystals</subject><subject>polyimide films</subject><subject>Reviews</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>thermal conduction networks</subject><subject>Thermal conductivity</subject><subject>thermal management</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1uFDEURi0EIj_QUiJLNDSzXPvOjMflakMAKYgohIrC8o6vE0eemWDvJNqOd8gb8iQ42hAkGtzYxfmOrMPYKwELASDfDTb1CwkSAaCFJ2xfNFJUqKV6Wt4gZSUQ2z12kPNVQboa5HO2hwpE3aLYZ9-_btLcb-ZkIz-iHC5GbkfHzyhTMV_y0zRdJMqZT56fX1IabIxbvppGV1bhhvjpFLdhCI74cYgD__Xzji_L_CbQ7Qv2zNuY6eXDfci-Hb8_X32sTr58-LRanlQ9KoSqQYcgvPfWW-qod63urG9cpzVppbq1WztdK6tsjZYA0fm1gA7aWgjotcVD9nbnvU7Tj5nyxgwh9xSjHWmas5FKN9goXcuCvvkHvZrmNJbfGdlhOa1EUajFjurTlHMib65TKKW3RoC5z27us5vH7GXw-kE7rwdyj_ifzgXQO-A2RNr-R2c-L89Wf-W_AaWvju8</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Tao, Kangkang</creator><creator>Sun, Gaohui</creator><creator>Feng, Chengcheng</creator><creator>Liu, Guangmin</creator><creator>Li, Yahui</creator><creator>Chen, Rongrong</creator><creator>Wang, Jun</creator><creator>Han, Shihui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1177-6712</orcidid></search><sort><creationdate>202307</creationdate><title>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</title><author>Tao, Kangkang ; Sun, Gaohui ; Feng, Chengcheng ; Liu, Guangmin ; Li, Yahui ; Chen, Rongrong ; Wang, Jun ; Han, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-53d301fffafae8ecd698af5d899e9778bdbd947a7a43ae033dfb108064110c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conduction</topic><topic>Conduction heating</topic><topic>Conduction model</topic><topic>Electronic equipment</topic><topic>Fillers</topic><topic>liquid crystalline</topic><topic>Liquid crystals</topic><topic>polyimide films</topic><topic>Reviews</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>thermal conduction networks</topic><topic>Thermal conductivity</topic><topic>thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Kangkang</creatorcontrib><creatorcontrib>Sun, Gaohui</creatorcontrib><creatorcontrib>Feng, Chengcheng</creatorcontrib><creatorcontrib>Liu, Guangmin</creatorcontrib><creatorcontrib>Li, Yahui</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Han, Shihui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Kangkang</au><au>Sun, Gaohui</au><au>Feng, Chengcheng</au><au>Liu, Guangmin</au><au>Li, Yahui</au><au>Chen, Rongrong</au><au>Wang, Jun</au><au>Han, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2023-07</date><risdate>2023</risdate><volume>44</volume><issue>13</issue><spage>e2300060</spage><epage>n/a</epage><pages>e2300060-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high‐λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.
This review summarizes the progress in thermally conductive polyimide (PI) films, focusing on thermal conduction mechanisms and models. Liquid crystalline PI film can break the bottleneck of intrinsic thermal conductivity coefficient (λ) enhancement. Influencing factors on λ of filler‐strengthened PI film are discussed. Strategies of filler combination are involved. Future research and challenges of high‐λ PI films are also discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37014631</pmid><doi>10.1002/marc.202300060</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1177-6712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2023-07, Vol.44 (13), p.e2300060-n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_2795357942 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Conduction Conduction heating Conduction model Electronic equipment Fillers liquid crystalline Liquid crystals polyimide films Reviews Structural design Structural engineering thermal conduction networks Thermal conductivity thermal management |
title | Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Design%20and%20Research%20Progress%20of%20Thermally%20Conductive%20Polyimide%20Film%20%E2%80%93%20A%20Review&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Tao,%20Kangkang&rft.date=2023-07&rft.volume=44&rft.issue=13&rft.spage=e2300060&rft.epage=n/a&rft.pages=e2300060-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202300060&rft_dat=%3Cproquest_cross%3E2795357942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833336231&rft_id=info:pmid/37014631&rfr_iscdi=true |