Resonant vibration behavior of lead-free solders

This study investigated the resonant vibration-fatigue characteristics of some potential lead-free solders, including Sn-Zn, Sn-Ag Sn-Cu, and Sn-Bi alloys. Results show that, under a fixed vibration force, the damping capacity and vibration-fracture resistance of Sn-Cu and Sn-Ag eutectic alloys with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2003-12, Vol.32 (12), p.1501-1508
Hauptverfasser: SONG, J. M, LUI, T. S, CHEN, L. H, TSAI, D. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1508
container_issue 12
container_start_page 1501
container_title Journal of electronic materials
container_volume 32
creator SONG, J. M
LUI, T. S
CHEN, L. H
TSAI, D. Y
description This study investigated the resonant vibration-fatigue characteristics of some potential lead-free solders, including Sn-Zn, Sn-Ag Sn-Cu, and Sn-Bi alloys. Results show that, under a fixed vibration force, the damping capacity and vibration-fracture resistance of Sn-Cu and Sn-Ag eutectic alloys with an off-eutectic structure are higher than Sn-Pb and are also higher than Sn-Bi and Sn-Zn. This is closely related to the vibration-deformed structure and crack-propagation morphology associated with the microstructural features of the materials. Also, the striated deformation in the Sn-rich phase can be regarded as an effective mechanism in absorbing vibration energy. Moreover, microstructural modification of the Sn-Zn eutectic alloy can be achieved through Ag addition, and thus, the damping capacity and vibration-fracture resistance can be significantly improved.
doi_str_mv 10.1007/s11664-003-0121-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27951151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27951151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-50b17a526fd67036b2b2573660132fd2694ffe7521e83bb3f497019cb8d10af13</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-AG9F0Ft0JmmS9iiLX7AgiIK3kLQJduk2a9Iu-O_NsguCp7k87zszDyGXCLcIoO4SopQlBeAUkCHlR2SGouQUK_l5TGbAJVLBuDglZymtAFBghTMCby6FwQxjse1sNGMXhsK6L7PtQiyCL3pnWuqjc0UKfetiOicn3vTJXRzmnHw8Prwvnuny9ellcb-kDec4UgEWlRFM-laqvNwyy4TiUgJy5lsm69J7pwRDV3FruS9rBVg3tmoRjEc-Jzf73k0M35NLo153qXF9bwYXpqSZqgXmJzJ49Q9chSkO-TbNoKyqrENmCPdQE0NK0Xm9id3axB-NoHcC9V6gzgL1TqDmOXN9KDapMb2PZmi69BcUvAapSv4L88htvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204880126</pqid></control><display><type>article</type><title>Resonant vibration behavior of lead-free solders</title><source>SpringerLink Journals - AutoHoldings</source><creator>SONG, J. M ; LUI, T. S ; CHEN, L. H ; TSAI, D. Y</creator><creatorcontrib>SONG, J. M ; LUI, T. S ; CHEN, L. H ; TSAI, D. Y</creatorcontrib><description>This study investigated the resonant vibration-fatigue characteristics of some potential lead-free solders, including Sn-Zn, Sn-Ag Sn-Cu, and Sn-Bi alloys. Results show that, under a fixed vibration force, the damping capacity and vibration-fracture resistance of Sn-Cu and Sn-Ag eutectic alloys with an off-eutectic structure are higher than Sn-Pb and are also higher than Sn-Bi and Sn-Zn. This is closely related to the vibration-deformed structure and crack-propagation morphology associated with the microstructural features of the materials. Also, the striated deformation in the Sn-rich phase can be regarded as an effective mechanism in absorbing vibration energy. Moreover, microstructural modification of the Sn-Zn eutectic alloy can be achieved through Ag addition, and thus, the damping capacity and vibration-fracture resistance can be significantly improved.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-003-0121-3</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Anelasticity, internal friction, stress relaxation, and mechanical resonances ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Journal of electronic materials, 2003-12, Vol.32 (12), p.1501-1508</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-50b17a526fd67036b2b2573660132fd2694ffe7521e83bb3f497019cb8d10af13</citedby><cites>FETCH-LOGICAL-c331t-50b17a526fd67036b2b2573660132fd2694ffe7521e83bb3f497019cb8d10af13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15390674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SONG, J. M</creatorcontrib><creatorcontrib>LUI, T. S</creatorcontrib><creatorcontrib>CHEN, L. H</creatorcontrib><creatorcontrib>TSAI, D. Y</creatorcontrib><title>Resonant vibration behavior of lead-free solders</title><title>Journal of electronic materials</title><description>This study investigated the resonant vibration-fatigue characteristics of some potential lead-free solders, including Sn-Zn, Sn-Ag Sn-Cu, and Sn-Bi alloys. Results show that, under a fixed vibration force, the damping capacity and vibration-fracture resistance of Sn-Cu and Sn-Ag eutectic alloys with an off-eutectic structure are higher than Sn-Pb and are also higher than Sn-Bi and Sn-Zn. This is closely related to the vibration-deformed structure and crack-propagation morphology associated with the microstructural features of the materials. Also, the striated deformation in the Sn-rich phase can be regarded as an effective mechanism in absorbing vibration energy. Moreover, microstructural modification of the Sn-Zn eutectic alloy can be achieved through Ag addition, and thus, the damping capacity and vibration-fracture resistance can be significantly improved.</description><subject>Anelasticity, internal friction, stress relaxation, and mechanical resonances</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LxDAQhoMouK7-AG9F0Ft0JmmS9iiLX7AgiIK3kLQJduk2a9Iu-O_NsguCp7k87zszDyGXCLcIoO4SopQlBeAUkCHlR2SGouQUK_l5TGbAJVLBuDglZymtAFBghTMCby6FwQxjse1sNGMXhsK6L7PtQiyCL3pnWuqjc0UKfetiOicn3vTJXRzmnHw8Prwvnuny9ellcb-kDec4UgEWlRFM-laqvNwyy4TiUgJy5lsm69J7pwRDV3FruS9rBVg3tmoRjEc-Jzf73k0M35NLo153qXF9bwYXpqSZqgXmJzJ49Q9chSkO-TbNoKyqrENmCPdQE0NK0Xm9id3axB-NoHcC9V6gzgL1TqDmOXN9KDapMb2PZmi69BcUvAapSv4L88htvQ</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>SONG, J. M</creator><creator>LUI, T. S</creator><creator>CHEN, L. H</creator><creator>TSAI, D. Y</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20031201</creationdate><title>Resonant vibration behavior of lead-free solders</title><author>SONG, J. M ; LUI, T. S ; CHEN, L. H ; TSAI, D. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-50b17a526fd67036b2b2573660132fd2694ffe7521e83bb3f497019cb8d10af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anelasticity, internal friction, stress relaxation, and mechanical resonances</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SONG, J. M</creatorcontrib><creatorcontrib>LUI, T. S</creatorcontrib><creatorcontrib>CHEN, L. H</creatorcontrib><creatorcontrib>TSAI, D. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SONG, J. M</au><au>LUI, T. S</au><au>CHEN, L. H</au><au>TSAI, D. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant vibration behavior of lead-free solders</atitle><jtitle>Journal of electronic materials</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>32</volume><issue>12</issue><spage>1501</spage><epage>1508</epage><pages>1501-1508</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This study investigated the resonant vibration-fatigue characteristics of some potential lead-free solders, including Sn-Zn, Sn-Ag Sn-Cu, and Sn-Bi alloys. Results show that, under a fixed vibration force, the damping capacity and vibration-fracture resistance of Sn-Cu and Sn-Ag eutectic alloys with an off-eutectic structure are higher than Sn-Pb and are also higher than Sn-Bi and Sn-Zn. This is closely related to the vibration-deformed structure and crack-propagation morphology associated with the microstructural features of the materials. Also, the striated deformation in the Sn-rich phase can be regarded as an effective mechanism in absorbing vibration energy. Moreover, microstructural modification of the Sn-Zn eutectic alloy can be achieved through Ag addition, and thus, the damping capacity and vibration-fracture resistance can be significantly improved.</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-003-0121-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2003-12, Vol.32 (12), p.1501-1508
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_27951151
source SpringerLink Journals - AutoHoldings
subjects Anelasticity, internal friction, stress relaxation, and mechanical resonances
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
title Resonant vibration behavior of lead-free solders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20vibration%20behavior%20of%20lead-free%20solders&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=SONG,%20J.%20M&rft.date=2003-12-01&rft.volume=32&rft.issue=12&rft.spage=1501&rft.epage=1508&rft.pages=1501-1508&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-003-0121-3&rft_dat=%3Cproquest_cross%3E27951151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204880126&rft_id=info:pmid/&rfr_iscdi=true