Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition

The impact of the growth conditions of the germanium seed layer on the material quality of epitaxial germanium grown on (100) silicon by Low Pressure Chemical Vapor Deposition is studied. In order to obtain a smooth surface morphology, a thin Ge seed layer is grown at low temperature, followed by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2006-06, Vol.508 (1), p.14-19
Hauptverfasser: Olubuyide, Oluwamuyiwa O., Danielson, David T., Kimerling, Lionel C., Hoyt, Judy L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 14
container_title Thin solid films
container_volume 508
creator Olubuyide, Oluwamuyiwa O.
Danielson, David T.
Kimerling, Lionel C.
Hoyt, Judy L.
description The impact of the growth conditions of the germanium seed layer on the material quality of epitaxial germanium grown on (100) silicon by Low Pressure Chemical Vapor Deposition is studied. In order to obtain a smooth surface morphology, a thin Ge seed layer is grown at low temperature, followed by a thick Ge cap layer at high temperature. An optimal seed deposition condition of 335 °C and 4 kPa is identified. Seed layer growth at lower temperatures (e.g. 320 °C) leads to the formation of crystallographic defects, while growth above 350 °C produces unacceptable surface roughening associated with rapid Ge surface diffusion. Seed growth pressures above 6 kPa are found to lead to gas phase nucleation. A qualitative growth model for the Ge seed layer at 335 °C and 4 kPa is also described. It is demonstrated that a Ge seed layer thickness greater than 30 nm is required to obtain smooth Ge films. For seed layers at or below 30 nm thicknesses, the lowered thermal stability of this thin film produces severe islanding during the transition to the cap growth temperature (650 °C). In situ doping with boron above ∼10 19 cm − 3 in the seed layer enhances the seed growth rate and lowers the Ge/Si interfacial oxygen level. For in situ annealed 2 μm-thick Ge films deposited on this seed layer, a threading dislocation density of ∼2 × 10 7 cm − 2 is achieved, along with a surface roughness of ∼1.6 nm.
doi_str_mv 10.1016/j.tsf.2005.06.120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27948389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060900501895X</els_id><sourcerecordid>27948389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-87dea554f90f8311c5cdb40f2daecc2eede6dd6973b8ae73f9943db5546c76a83</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvhA3Dzpb0lHTt_HKunqqJQqRIXOFteewxeJXFqO233wmfH0RZx62mk0e-9mfcI-cygZsD6y0Odk6s5QFdDXzMOb8iODUJWXDTsLdkBtFD1IOE9-ZDSAQAY582O_LmbFm0yDY4mREtHfcRIw0wnnTF6PdKHVY8-HzcCF5_187b8hXHSs1-nDU1-9KZMi0tIPheX_ZGO4YkuEVNaI1LzGydviu5RLyH-A32YP5J3To8JP73MM_Lz9suPm2_V_fevdzfX95VpeZurQVjUXdc6CW5oGDOdsfsWHLcajeHlceyt7aVo9oNG0Tgp28bui6I3otdDc0YuTr5LDA8rpqwmnwyOo54xrElxIduhGWQB2Qk0MaQU0akl-knHo2KgtqbVQZWm1da0gl6Vpovm_MVcpxLSRT0bn_4Lheg6kJv31YnDkvTRY1TJeJwNWh_RZGWDf-XKX4b2lyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27948389</pqid></control><display><type>article</type><title>Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Olubuyide, Oluwamuyiwa O. ; Danielson, David T. ; Kimerling, Lionel C. ; Hoyt, Judy L.</creator><creatorcontrib>Olubuyide, Oluwamuyiwa O. ; Danielson, David T. ; Kimerling, Lionel C. ; Hoyt, Judy L.</creatorcontrib><description>The impact of the growth conditions of the germanium seed layer on the material quality of epitaxial germanium grown on (100) silicon by Low Pressure Chemical Vapor Deposition is studied. In order to obtain a smooth surface morphology, a thin Ge seed layer is grown at low temperature, followed by a thick Ge cap layer at high temperature. An optimal seed deposition condition of 335 °C and 4 kPa is identified. Seed layer growth at lower temperatures (e.g. 320 °C) leads to the formation of crystallographic defects, while growth above 350 °C produces unacceptable surface roughening associated with rapid Ge surface diffusion. Seed growth pressures above 6 kPa are found to lead to gas phase nucleation. A qualitative growth model for the Ge seed layer at 335 °C and 4 kPa is also described. It is demonstrated that a Ge seed layer thickness greater than 30 nm is required to obtain smooth Ge films. For seed layers at or below 30 nm thicknesses, the lowered thermal stability of this thin film produces severe islanding during the transition to the cap growth temperature (650 °C). In situ doping with boron above ∼10 19 cm − 3 in the seed layer enhances the seed growth rate and lowers the Ge/Si interfacial oxygen level. For in situ annealed 2 μm-thick Ge films deposited on this seed layer, a threading dislocation density of ∼2 × 10 7 cm − 2 is achieved, along with a surface roughness of ∼1.6 nm.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2005.06.120</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Epitaxy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; General studies of phase transitions ; Germanium ; LPCVD ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Nucleation ; Physics ; Silicon ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Thin solid films, 2006-06, Vol.508 (1), p.14-19</ispartof><rights>2005 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-87dea554f90f8311c5cdb40f2daecc2eede6dd6973b8ae73f9943db5546c76a83</citedby><cites>FETCH-LOGICAL-c424t-87dea554f90f8311c5cdb40f2daecc2eede6dd6973b8ae73f9943db5546c76a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2005.06.120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,3554,23939,23940,25149,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17755099$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olubuyide, Oluwamuyiwa O.</creatorcontrib><creatorcontrib>Danielson, David T.</creatorcontrib><creatorcontrib>Kimerling, Lionel C.</creatorcontrib><creatorcontrib>Hoyt, Judy L.</creatorcontrib><title>Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition</title><title>Thin solid films</title><description>The impact of the growth conditions of the germanium seed layer on the material quality of epitaxial germanium grown on (100) silicon by Low Pressure Chemical Vapor Deposition is studied. In order to obtain a smooth surface morphology, a thin Ge seed layer is grown at low temperature, followed by a thick Ge cap layer at high temperature. An optimal seed deposition condition of 335 °C and 4 kPa is identified. Seed layer growth at lower temperatures (e.g. 320 °C) leads to the formation of crystallographic defects, while growth above 350 °C produces unacceptable surface roughening associated with rapid Ge surface diffusion. Seed growth pressures above 6 kPa are found to lead to gas phase nucleation. A qualitative growth model for the Ge seed layer at 335 °C and 4 kPa is also described. It is demonstrated that a Ge seed layer thickness greater than 30 nm is required to obtain smooth Ge films. For seed layers at or below 30 nm thicknesses, the lowered thermal stability of this thin film produces severe islanding during the transition to the cap growth temperature (650 °C). In situ doping with boron above ∼10 19 cm − 3 in the seed layer enhances the seed growth rate and lowers the Ge/Si interfacial oxygen level. For in situ annealed 2 μm-thick Ge films deposited on this seed layer, a threading dislocation density of ∼2 × 10 7 cm − 2 is achieved, along with a surface roughness of ∼1.6 nm.</description><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Epitaxy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>General studies of phase transitions</subject><subject>Germanium</subject><subject>LPCVD</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Silicon</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvhA3Dzpb0lHTt_HKunqqJQqRIXOFteewxeJXFqO233wmfH0RZx62mk0e-9mfcI-cygZsD6y0Odk6s5QFdDXzMOb8iODUJWXDTsLdkBtFD1IOE9-ZDSAQAY582O_LmbFm0yDY4mREtHfcRIw0wnnTF6PdKHVY8-HzcCF5_187b8hXHSs1-nDU1-9KZMi0tIPheX_ZGO4YkuEVNaI1LzGydviu5RLyH-A32YP5J3To8JP73MM_Lz9suPm2_V_fevdzfX95VpeZurQVjUXdc6CW5oGDOdsfsWHLcajeHlceyt7aVo9oNG0Tgp28bui6I3otdDc0YuTr5LDA8rpqwmnwyOo54xrElxIduhGWQB2Qk0MaQU0akl-knHo2KgtqbVQZWm1da0gl6Vpovm_MVcpxLSRT0bn_4Lheg6kJv31YnDkvTRY1TJeJwNWh_RZGWDf-XKX4b2lyc</recordid><startdate>20060605</startdate><enddate>20060605</enddate><creator>Olubuyide, Oluwamuyiwa O.</creator><creator>Danielson, David T.</creator><creator>Kimerling, Lionel C.</creator><creator>Hoyt, Judy L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060605</creationdate><title>Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition</title><author>Olubuyide, Oluwamuyiwa O. ; Danielson, David T. ; Kimerling, Lionel C. ; Hoyt, Judy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-87dea554f90f8311c5cdb40f2daecc2eede6dd6973b8ae73f9943db5546c76a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Epitaxy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>General studies of phase transitions</topic><topic>Germanium</topic><topic>LPCVD</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Silicon</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olubuyide, Oluwamuyiwa O.</creatorcontrib><creatorcontrib>Danielson, David T.</creatorcontrib><creatorcontrib>Kimerling, Lionel C.</creatorcontrib><creatorcontrib>Hoyt, Judy L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olubuyide, Oluwamuyiwa O.</au><au>Danielson, David T.</au><au>Kimerling, Lionel C.</au><au>Hoyt, Judy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition</atitle><jtitle>Thin solid films</jtitle><date>2006-06-05</date><risdate>2006</risdate><volume>508</volume><issue>1</issue><spage>14</spage><epage>19</epage><pages>14-19</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The impact of the growth conditions of the germanium seed layer on the material quality of epitaxial germanium grown on (100) silicon by Low Pressure Chemical Vapor Deposition is studied. In order to obtain a smooth surface morphology, a thin Ge seed layer is grown at low temperature, followed by a thick Ge cap layer at high temperature. An optimal seed deposition condition of 335 °C and 4 kPa is identified. Seed layer growth at lower temperatures (e.g. 320 °C) leads to the formation of crystallographic defects, while growth above 350 °C produces unacceptable surface roughening associated with rapid Ge surface diffusion. Seed growth pressures above 6 kPa are found to lead to gas phase nucleation. A qualitative growth model for the Ge seed layer at 335 °C and 4 kPa is also described. It is demonstrated that a Ge seed layer thickness greater than 30 nm is required to obtain smooth Ge films. For seed layers at or below 30 nm thicknesses, the lowered thermal stability of this thin film produces severe islanding during the transition to the cap growth temperature (650 °C). In situ doping with boron above ∼10 19 cm − 3 in the seed layer enhances the seed growth rate and lowers the Ge/Si interfacial oxygen level. For in situ annealed 2 μm-thick Ge films deposited on this seed layer, a threading dislocation density of ∼2 × 10 7 cm − 2 is achieved, along with a surface roughness of ∼1.6 nm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2005.06.120</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2006-06, Vol.508 (1), p.14-19
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_27948389
source Access via ScienceDirect (Elsevier)
subjects Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Epitaxy
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
General studies of phase transitions
Germanium
LPCVD
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Nucleation
Physics
Silicon
Transport properties of condensed matter (nonelectronic)
title Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20seed%20layer%20on%20material%20quality%20of%20epitaxial%20germanium%20on%20silicon%20deposited%20by%20low%20pressure%20chemical%20vapor%20deposition&rft.jtitle=Thin%20solid%20films&rft.au=Olubuyide,%20Oluwamuyiwa%20O.&rft.date=2006-06-05&rft.volume=508&rft.issue=1&rft.spage=14&rft.epage=19&rft.pages=14-19&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2005.06.120&rft_dat=%3Cproquest_cross%3E27948389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27948389&rft_id=info:pmid/&rft_els_id=S004060900501895X&rfr_iscdi=true