Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging

Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical imaging (Bellingham, Wash.) Wash.), 2023-03, Vol.10 (2), p.024007-024007
Hauptverfasser: Hooper, Sarah M., Wu, Sen, Davies, Rhodri H., Bhuva, Anish, Schelbert, Erik B., Moon, James C., Kellman, Peter, Xue, Hui, Langlotz, Curtis, Ré, Christopher
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024007
container_issue 2
container_start_page 024007
container_title Journal of medical imaging (Bellingham, Wash.)
container_volume 10
creator Hooper, Sarah M.
Wu, Sen
Davies, Rhodri H.
Bhuva, Anish
Schelbert, Erik B.
Moon, James C.
Kellman, Peter
Xue, Hui
Langlotz, Curtis
Ré, Christopher
description Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentation networks with limited labeled data and focus on thorough network evaluation. We propose a semi-supervised method that leverages data augmentation, consistency regularization, and pseudolabeling and train four cardiac magnetic resonance (MR) segmentation networks. We evaluate the models on multiinstitutional, multiscanner, multidisease cardiac MR datasets using five cardiac functional biomarkers, which are compared to an expert's measurements using Lin's concordance correlation coefficient (CCC), the within-subject coefficient of variation (CV), and the Dice coefficient. The semi-supervised networks achieve strong agreement using Lin's CCC ( ), CV similar to an expert, and strong generalization performance. We compare the error modes of the semi-supervised networks against fully supervised networks. We evaluate semi-supervised model performance as a function of labeled training data and with different types of model supervision, showing that a model trained with 100 labeled image slices can achieve a Dice coefficient within 1.10% of a network trained with 16,000+ labeled image slices. We evaluate semi-supervision for medical image segmentation using heterogeneous datasets and clinical metrics. As methods for training models with little labeled data become more common, knowledge about how they perform on clinical tasks, how they fail, and how they perform with different amounts of labeled data is useful to model developers and users.
doi_str_mv 10.1117/1.JMI.10.2.024007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2794696476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794696476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c8174e174e35e1124ee3a45ffc41da2e515c85a3b3b083854a59e1153ae6d45b3</originalsourceid><addsrcrecordid>eNp9kE1P9CAUhYnRqFF_gBvD0k0rl49p684Y31eNxo2uCUNvR0wLFdpJ_Pcyjrp0QbgnPOcAh5BTYCUAVBdQ3j_elVnxknHJWLVDDrngTSEFsN3fmfEDcpLSG2MMgCkOcp8ciIqxhqnmkKxv1qafzeT8iiYcXJHmEePaJRc8HXB6DW2iXYh5bp01PXWDWWFGVwP6KfuCv6RmHPt8uBGJOk-tia0zlmbU4-QsjZiCN97ilz3fdUz2OtMnPPnej8jLv5vn69vi4en_3fXVQ2FFLabC1lBJ3CyhEIBLRGGk6joroTUcFShbKyOWYslqUStpVJM5JQwuWqmW4oicb3PHGN5nTJMeXLLY98ZjmJPmVSMXzUJWi4zCFrUxpBSx02PMr40fGpjeNK5B58Y3iutt49lz9h0_L3NBv46ffjNQboE0OtRvYY4-f_ePxE8SGYvr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794696476</pqid></control><display><type>article</type><title>Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hooper, Sarah M. ; Wu, Sen ; Davies, Rhodri H. ; Bhuva, Anish ; Schelbert, Erik B. ; Moon, James C. ; Kellman, Peter ; Xue, Hui ; Langlotz, Curtis ; Ré, Christopher</creator><creatorcontrib>Hooper, Sarah M. ; Wu, Sen ; Davies, Rhodri H. ; Bhuva, Anish ; Schelbert, Erik B. ; Moon, James C. ; Kellman, Peter ; Xue, Hui ; Langlotz, Curtis ; Ré, Christopher</creatorcontrib><description>Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentation networks with limited labeled data and focus on thorough network evaluation. We propose a semi-supervised method that leverages data augmentation, consistency regularization, and pseudolabeling and train four cardiac magnetic resonance (MR) segmentation networks. We evaluate the models on multiinstitutional, multiscanner, multidisease cardiac MR datasets using five cardiac functional biomarkers, which are compared to an expert's measurements using Lin's concordance correlation coefficient (CCC), the within-subject coefficient of variation (CV), and the Dice coefficient. The semi-supervised networks achieve strong agreement using Lin's CCC ( ), CV similar to an expert, and strong generalization performance. We compare the error modes of the semi-supervised networks against fully supervised networks. We evaluate semi-supervised model performance as a function of labeled training data and with different types of model supervision, showing that a model trained with 100 labeled image slices can achieve a Dice coefficient within 1.10% of a network trained with 16,000+ labeled image slices. We evaluate semi-supervision for medical image segmentation using heterogeneous datasets and clinical metrics. As methods for training models with little labeled data become more common, knowledge about how they perform on clinical tasks, how they fail, and how they perform with different amounts of labeled data is useful to model developers and users.</description><identifier>ISSN: 2329-4302</identifier><identifier>EISSN: 2329-4310</identifier><identifier>DOI: 10.1117/1.JMI.10.2.024007</identifier><identifier>PMID: 37009059</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of medical imaging (Bellingham, Wash.), 2023-03, Vol.10 (2), p.024007-024007</ispartof><rights>2023 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><rights>2023 Society of Photo-Optical Instrumentation Engineers (SPIE).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c8174e174e35e1124ee3a45ffc41da2e515c85a3b3b083854a59e1153ae6d45b3</citedby><orcidid>0000-0001-9366-2174 ; 0000-0002-8972-8051 ; 0000-0001-7532-7815 ; 0000-0003-0356-4437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37009059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hooper, Sarah M.</creatorcontrib><creatorcontrib>Wu, Sen</creatorcontrib><creatorcontrib>Davies, Rhodri H.</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Schelbert, Erik B.</creatorcontrib><creatorcontrib>Moon, James C.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Langlotz, Curtis</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><title>Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging</title><title>Journal of medical imaging (Bellingham, Wash.)</title><addtitle>J. Med. Imag</addtitle><description>Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentation networks with limited labeled data and focus on thorough network evaluation. We propose a semi-supervised method that leverages data augmentation, consistency regularization, and pseudolabeling and train four cardiac magnetic resonance (MR) segmentation networks. We evaluate the models on multiinstitutional, multiscanner, multidisease cardiac MR datasets using five cardiac functional biomarkers, which are compared to an expert's measurements using Lin's concordance correlation coefficient (CCC), the within-subject coefficient of variation (CV), and the Dice coefficient. The semi-supervised networks achieve strong agreement using Lin's CCC ( ), CV similar to an expert, and strong generalization performance. We compare the error modes of the semi-supervised networks against fully supervised networks. We evaluate semi-supervised model performance as a function of labeled training data and with different types of model supervision, showing that a model trained with 100 labeled image slices can achieve a Dice coefficient within 1.10% of a network trained with 16,000+ labeled image slices. We evaluate semi-supervision for medical image segmentation using heterogeneous datasets and clinical metrics. As methods for training models with little labeled data become more common, knowledge about how they perform on clinical tasks, how they fail, and how they perform with different amounts of labeled data is useful to model developers and users.</description><issn>2329-4302</issn><issn>2329-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P9CAUhYnRqFF_gBvD0k0rl49p684Y31eNxo2uCUNvR0wLFdpJ_Pcyjrp0QbgnPOcAh5BTYCUAVBdQ3j_elVnxknHJWLVDDrngTSEFsN3fmfEDcpLSG2MMgCkOcp8ciIqxhqnmkKxv1qafzeT8iiYcXJHmEePaJRc8HXB6DW2iXYh5bp01PXWDWWFGVwP6KfuCv6RmHPt8uBGJOk-tia0zlmbU4-QsjZiCN97ilz3fdUz2OtMnPPnej8jLv5vn69vi4en_3fXVQ2FFLabC1lBJ3CyhEIBLRGGk6joroTUcFShbKyOWYslqUStpVJM5JQwuWqmW4oicb3PHGN5nTJMeXLLY98ZjmJPmVSMXzUJWi4zCFrUxpBSx02PMr40fGpjeNK5B58Y3iutt49lz9h0_L3NBv46ffjNQboE0OtRvYY4-f_ePxE8SGYvr</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hooper, Sarah M.</creator><creator>Wu, Sen</creator><creator>Davies, Rhodri H.</creator><creator>Bhuva, Anish</creator><creator>Schelbert, Erik B.</creator><creator>Moon, James C.</creator><creator>Kellman, Peter</creator><creator>Xue, Hui</creator><creator>Langlotz, Curtis</creator><creator>Ré, Christopher</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9366-2174</orcidid><orcidid>https://orcid.org/0000-0002-8972-8051</orcidid><orcidid>https://orcid.org/0000-0001-7532-7815</orcidid><orcidid>https://orcid.org/0000-0003-0356-4437</orcidid></search><sort><creationdate>20230301</creationdate><title>Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging</title><author>Hooper, Sarah M. ; Wu, Sen ; Davies, Rhodri H. ; Bhuva, Anish ; Schelbert, Erik B. ; Moon, James C. ; Kellman, Peter ; Xue, Hui ; Langlotz, Curtis ; Ré, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c8174e174e35e1124ee3a45ffc41da2e515c85a3b3b083854a59e1153ae6d45b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooper, Sarah M.</creatorcontrib><creatorcontrib>Wu, Sen</creatorcontrib><creatorcontrib>Davies, Rhodri H.</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Schelbert, Erik B.</creatorcontrib><creatorcontrib>Moon, James C.</creatorcontrib><creatorcontrib>Kellman, Peter</creatorcontrib><creatorcontrib>Xue, Hui</creatorcontrib><creatorcontrib>Langlotz, Curtis</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooper, Sarah M.</au><au>Wu, Sen</au><au>Davies, Rhodri H.</au><au>Bhuva, Anish</au><au>Schelbert, Erik B.</au><au>Moon, James C.</au><au>Kellman, Peter</au><au>Xue, Hui</au><au>Langlotz, Curtis</au><au>Ré, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging</atitle><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle><addtitle>J. Med. Imag</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>024007</spage><epage>024007</epage><pages>024007-024007</pages><issn>2329-4302</issn><eissn>2329-4310</eissn><abstract>Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentation networks with limited labeled data and focus on thorough network evaluation. We propose a semi-supervised method that leverages data augmentation, consistency regularization, and pseudolabeling and train four cardiac magnetic resonance (MR) segmentation networks. We evaluate the models on multiinstitutional, multiscanner, multidisease cardiac MR datasets using five cardiac functional biomarkers, which are compared to an expert's measurements using Lin's concordance correlation coefficient (CCC), the within-subject coefficient of variation (CV), and the Dice coefficient. The semi-supervised networks achieve strong agreement using Lin's CCC ( ), CV similar to an expert, and strong generalization performance. We compare the error modes of the semi-supervised networks against fully supervised networks. We evaluate semi-supervised model performance as a function of labeled training data and with different types of model supervision, showing that a model trained with 100 labeled image slices can achieve a Dice coefficient within 1.10% of a network trained with 16,000+ labeled image slices. We evaluate semi-supervision for medical image segmentation using heterogeneous datasets and clinical metrics. As methods for training models with little labeled data become more common, knowledge about how they perform on clinical tasks, how they fail, and how they perform with different amounts of labeled data is useful to model developers and users.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>37009059</pmid><doi>10.1117/1.JMI.10.2.024007</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9366-2174</orcidid><orcidid>https://orcid.org/0000-0002-8972-8051</orcidid><orcidid>https://orcid.org/0000-0001-7532-7815</orcidid><orcidid>https://orcid.org/0000-0003-0356-4437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-4302
ispartof Journal of medical imaging (Bellingham, Wash.), 2023-03, Vol.10 (2), p.024007-024007
issn 2329-4302
2329-4310
language eng
recordid cdi_proquest_miscellaneous_2794696476
source EZB-FREE-00999 freely available EZB journals; PubMed Central
title Evaluating semi-supervision methods for medical image segmentation: applications in cardiac magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20semi-supervision%20methods%20for%20medical%20image%20segmentation:%20applications%20in%20cardiac%20magnetic%20resonance%20imaging&rft.jtitle=Journal%20of%20medical%20imaging%20(Bellingham,%20Wash.)&rft.au=Hooper,%20Sarah%20M.&rft.date=2023-03-01&rft.volume=10&rft.issue=2&rft.spage=024007&rft.epage=024007&rft.pages=024007-024007&rft.issn=2329-4302&rft.eissn=2329-4310&rft_id=info:doi/10.1117/1.JMI.10.2.024007&rft_dat=%3Cproquest_pubme%3E2794696476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794696476&rft_id=info:pmid/37009059&rfr_iscdi=true