Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion

The MXene@Ce-MOF electrode material is rich in oxygen vacancies caused by surface defects of Ce-MOF, which makes it have excellent properties of HER, OER and supercapacitor. [Display omitted] •MXene promotes the generation of surface defects in Ce-MOF, which in turn leads to the generation of oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-07, Vol.642, p.235-245
Hauptverfasser: Li, Shuke, Chai, Hanrui, Zhang, Ling, Xu, Yanchao, Jiao, Yang, Chen, Jianrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue
container_start_page 235
container_title Journal of colloid and interface science
container_volume 642
creator Li, Shuke
Chai, Hanrui
Zhang, Ling
Xu, Yanchao
Jiao, Yang
Chen, Jianrong
description The MXene@Ce-MOF electrode material is rich in oxygen vacancies caused by surface defects of Ce-MOF, which makes it have excellent properties of HER, OER and supercapacitor. [Display omitted] •MXene promotes the generation of surface defects in Ce-MOF, which in turn leads to the generation of oxygen vacancies.•The surface of single layer MXene contains a large number of F-, which not only plays a role in attracting cerium ions, but also contributes to improve the hydrophilicity of electrode materials.•The introduction of MXene can further enhance the electrical conductivity of Ce-MOF, and also increase the reactive active site. Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g−1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm−2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.
doi_str_mv 10.1016/j.jcis.2023.03.120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2794690004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723004861</els_id><sourcerecordid>2794690004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-84068a30462bfc09b38bddcca82139f4fd9c7dd727b8013b88d11ebafac2e0f23</originalsourceid><addsrcrecordid>eNp9kE1rGzEURUVpqN0kf6CLomU3M3mS5kvQRYppmoBDNil0JzTSG1vGllxpxsT_vjJOuszqvcW5F-4h5AuDkgFrbjblxrhUcuCiBFEyDh_InIGsi5aB-EjmAJwVspXtjHxOaQPAWF3LT2QmWoCK192c2EXwaYyTGZ1f0fByXKGnB220N8ciOrOmj3_QI71dYPH4dEdN2O1DciMmOoRI0a8ziTY_GFdHmsYQ9Qqp9jaj_oAxueCvyMWgtwmvX-8l-X3383lxXyyffj0sfiwLI-pmLLoKmk4LqBreDwZkL7reWmN0x5mQQzVYaVprW972HTDRd51lDHs9aMMRBi4uybdz7z6GvxOmUe1cMrjdao9hSoq3smok5O0Z5WfUxJBSxEHto9vpeFQM1Mmu2qiTXXWyq0CobDeHvr72T_0O7f_Im84MfD8DmFceHEaVjMOTIBfRjMoG917_P0V-jKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794690004</pqid></control><display><type>article</type><title>Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Shuke ; Chai, Hanrui ; Zhang, Ling ; Xu, Yanchao ; Jiao, Yang ; Chen, Jianrong</creator><creatorcontrib>Li, Shuke ; Chai, Hanrui ; Zhang, Ling ; Xu, Yanchao ; Jiao, Yang ; Chen, Jianrong</creatorcontrib><description>The MXene@Ce-MOF electrode material is rich in oxygen vacancies caused by surface defects of Ce-MOF, which makes it have excellent properties of HER, OER and supercapacitor. [Display omitted] •MXene promotes the generation of surface defects in Ce-MOF, which in turn leads to the generation of oxygen vacancies.•The surface of single layer MXene contains a large number of F-, which not only plays a role in attracting cerium ions, but also contributes to improve the hydrophilicity of electrode materials.•The introduction of MXene can further enhance the electrical conductivity of Ce-MOF, and also increase the reactive active site. Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g−1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm−2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.03.120</identifier><identifier>PMID: 37004258</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ce-based metal-organic framework (Ce-MOF) ; Electrocatalyst ; MXene ; Oxygen vacancy ; Supercapacitor ; Surface defect structure</subject><ispartof>Journal of colloid and interface science, 2023-07, Vol.642, p.235-245</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-84068a30462bfc09b38bddcca82139f4fd9c7dd727b8013b88d11ebafac2e0f23</citedby><cites>FETCH-LOGICAL-c356t-84068a30462bfc09b38bddcca82139f4fd9c7dd727b8013b88d11ebafac2e0f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2023.03.120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37004258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shuke</creatorcontrib><creatorcontrib>Chai, Hanrui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Xu, Yanchao</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Chen, Jianrong</creatorcontrib><title>Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The MXene@Ce-MOF electrode material is rich in oxygen vacancies caused by surface defects of Ce-MOF, which makes it have excellent properties of HER, OER and supercapacitor. [Display omitted] •MXene promotes the generation of surface defects in Ce-MOF, which in turn leads to the generation of oxygen vacancies.•The surface of single layer MXene contains a large number of F-, which not only plays a role in attracting cerium ions, but also contributes to improve the hydrophilicity of electrode materials.•The introduction of MXene can further enhance the electrical conductivity of Ce-MOF, and also increase the reactive active site. Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g−1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm−2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.</description><subject>Ce-based metal-organic framework (Ce-MOF)</subject><subject>Electrocatalyst</subject><subject>MXene</subject><subject>Oxygen vacancy</subject><subject>Supercapacitor</subject><subject>Surface defect structure</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEURUVpqN0kf6CLomU3M3mS5kvQRYppmoBDNil0JzTSG1vGllxpxsT_vjJOuszqvcW5F-4h5AuDkgFrbjblxrhUcuCiBFEyDh_InIGsi5aB-EjmAJwVspXtjHxOaQPAWF3LT2QmWoCK192c2EXwaYyTGZ1f0fByXKGnB220N8ciOrOmj3_QI71dYPH4dEdN2O1DciMmOoRI0a8ziTY_GFdHmsYQ9Qqp9jaj_oAxueCvyMWgtwmvX-8l-X3383lxXyyffj0sfiwLI-pmLLoKmk4LqBreDwZkL7reWmN0x5mQQzVYaVprW972HTDRd51lDHs9aMMRBi4uybdz7z6GvxOmUe1cMrjdao9hSoq3smok5O0Z5WfUxJBSxEHto9vpeFQM1Mmu2qiTXXWyq0CobDeHvr72T_0O7f_Im84MfD8DmFceHEaVjMOTIBfRjMoG917_P0V-jKA</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Li, Shuke</creator><creator>Chai, Hanrui</creator><creator>Zhang, Ling</creator><creator>Xu, Yanchao</creator><creator>Jiao, Yang</creator><creator>Chen, Jianrong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230715</creationdate><title>Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion</title><author>Li, Shuke ; Chai, Hanrui ; Zhang, Ling ; Xu, Yanchao ; Jiao, Yang ; Chen, Jianrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-84068a30462bfc09b38bddcca82139f4fd9c7dd727b8013b88d11ebafac2e0f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ce-based metal-organic framework (Ce-MOF)</topic><topic>Electrocatalyst</topic><topic>MXene</topic><topic>Oxygen vacancy</topic><topic>Supercapacitor</topic><topic>Surface defect structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuke</creatorcontrib><creatorcontrib>Chai, Hanrui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Xu, Yanchao</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Chen, Jianrong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuke</au><au>Chai, Hanrui</au><au>Zhang, Ling</au><au>Xu, Yanchao</au><au>Jiao, Yang</au><au>Chen, Jianrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2023-07-15</date><risdate>2023</risdate><volume>642</volume><spage>235</spage><epage>245</epage><pages>235-245</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>The MXene@Ce-MOF electrode material is rich in oxygen vacancies caused by surface defects of Ce-MOF, which makes it have excellent properties of HER, OER and supercapacitor. [Display omitted] •MXene promotes the generation of surface defects in Ce-MOF, which in turn leads to the generation of oxygen vacancies.•The surface of single layer MXene contains a large number of F-, which not only plays a role in attracting cerium ions, but also contributes to improve the hydrophilicity of electrode materials.•The introduction of MXene can further enhance the electrical conductivity of Ce-MOF, and also increase the reactive active site. Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g−1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm−2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37004258</pmid><doi>10.1016/j.jcis.2023.03.120</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2023-07, Vol.642, p.235-245
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2794690004
source Elsevier ScienceDirect Journals Complete
subjects Ce-based metal-organic framework (Ce-MOF)
Electrocatalyst
MXene
Oxygen vacancy
Supercapacitor
Surface defect structure
title Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20oxygen%20vacancy-rich%20MXene%20@Ce-MOF%20composites%20for%20enhanced%20energy%20storage%20and%20conversion&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Li,%20Shuke&rft.date=2023-07-15&rft.volume=642&rft.spage=235&rft.epage=245&rft.pages=235-245&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.03.120&rft_dat=%3Cproquest_cross%3E2794690004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794690004&rft_id=info:pmid/37004258&rft_els_id=S0021979723004861&rfr_iscdi=true