Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data

The INDEPTH project has applied modern geophysical techniques to the study of the crustal structure and tectonic evolution of the Tibetan Plateau. In the Lhasa Block, seismic reflection surveys in 1994 detected a number of bright-spots at 15–20 km depths that indicate zones of crustal fluids (aqueou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2003-05, Vol.153 (2), p.289-304
Hauptverfasser: Li, Shenghui, Unsworth, Martyn J., Booker, John R., Wei, Wenbo, Tan, Handong, Jones, Alan G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 289
container_title Geophysical journal international
container_volume 153
creator Li, Shenghui
Unsworth, Martyn J.
Booker, John R.
Wei, Wenbo
Tan, Handong
Jones, Alan G.
description The INDEPTH project has applied modern geophysical techniques to the study of the crustal structure and tectonic evolution of the Tibetan Plateau. In the Lhasa Block, seismic reflection surveys in 1994 detected a number of bright-spots at 15–20 km depths that indicate zones of crustal fluids (aqueous fluids or partial melt). Coincident magnetotelluric (MT) data collected in 1995 detected a major zone of high electrical conductivity at the same depth as the bright-spots. Using constrained inversion, the MT data require a minimum crustal conductance of 6000 S. This abnormally high electrical conductance can be best explained by a layered model with fluids: partial melt, aqueous fluids or a combination of partial melt and aqueous fluids. The non-uniqueness of the MT method means that a wide range of melt fraction—thickness combinations for the above models could all explain the 6000 S conductance. To distinguish between these three models, other geophysical and geological data are required. Reflection seismic data suggest that a high fluid content (>15 per cent) is present at the top of the layer. The amplitude-versus-offset data suggest that the top of this layer may be aqueous fluids rather than partial melt. Passive seismic data imaged a 20 km thick layer of lower fluid content that is probably partial melt. Petrological studies suggest that concentrations of aqueous fluids above 0.1 per cent at mid-crustal depth cannot be sustained. Taken together, these data show that the high conductivity in Southern Tibet is most probably the result of a relatively thin layer of aqueous fluids (100–200 m) overlying a thicker zone of partial melt (>10 km).
doi_str_mv 10.1046/j.1365-246X.2003.01850.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27942177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-246X.2003.01850.x</oup_id><sourcerecordid>27942177</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5630-5b5b06e8c025c44290bf47cf7c0f074e57437c2c12359d47599c75a595a921aa3</originalsourceid><addsrcrecordid>eNqNkE1vEzEQhi0EUkPhP_jEbZfx1zo-IARpaUKrUkEqRVwsx_GCw-46tb0i_ffsslVPIPXkkf0-M54HIUygJMCrt_uSsEoUlFebkgKwEshcQHl8hmaPD8_RDJSoCsFhc4JeprQHIJzw-QyFGxOzNw1uXZNxiNjc9S70CddN73fYdzj_dLj1u8LGPg2JGn8L_XAXO7z2W5ff40XoUo7Gd3mgYmjx6vrs_Ga9xK350bkcsmuaPnqLdyabV-hFbZrkXj-cp-j20_l6sSyuvlysFh-uCiMqBoXYii1Ubm6BCss5VbCtubS1tFCD5E5IzqSlllAm1I5LoZSVwggljKLEGHaK3kx9DzEMG6WsW5_s8BPTjetpKhWnRMohOJ-CNoaUoqv1IfrWxHtNQI-G9V6PIvUoUo-G9V_D-jig7yb0t2_c_ZM5ffF5NVYDzyY-9If_0MW_phYT5VN2x0fOxF-6kkwKvdx81_DxUnzl8kwr9gddz6Bt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27942177</pqid></control><display><type>article</type><title>Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Li, Shenghui ; Unsworth, Martyn J. ; Booker, John R. ; Wei, Wenbo ; Tan, Handong ; Jones, Alan G.</creator><creatorcontrib>Li, Shenghui ; Unsworth, Martyn J. ; Booker, John R. ; Wei, Wenbo ; Tan, Handong ; Jones, Alan G.</creatorcontrib><description>The INDEPTH project has applied modern geophysical techniques to the study of the crustal structure and tectonic evolution of the Tibetan Plateau. In the Lhasa Block, seismic reflection surveys in 1994 detected a number of bright-spots at 15–20 km depths that indicate zones of crustal fluids (aqueous fluids or partial melt). Coincident magnetotelluric (MT) data collected in 1995 detected a major zone of high electrical conductivity at the same depth as the bright-spots. Using constrained inversion, the MT data require a minimum crustal conductance of 6000 S. This abnormally high electrical conductance can be best explained by a layered model with fluids: partial melt, aqueous fluids or a combination of partial melt and aqueous fluids. The non-uniqueness of the MT method means that a wide range of melt fraction—thickness combinations for the above models could all explain the 6000 S conductance. To distinguish between these three models, other geophysical and geological data are required. Reflection seismic data suggest that a high fluid content (&gt;15 per cent) is present at the top of the layer. The amplitude-versus-offset data suggest that the top of this layer may be aqueous fluids rather than partial melt. Passive seismic data imaged a 20 km thick layer of lower fluid content that is probably partial melt. Petrological studies suggest that concentrations of aqueous fluids above 0.1 per cent at mid-crustal depth cannot be sustained. Taken together, these data show that the high conductivity in Southern Tibet is most probably the result of a relatively thin layer of aqueous fluids (100–200 m) overlying a thicker zone of partial melt (&gt;10 km).</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1046/j.1365-246X.2003.01850.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>electrical conductance ; electrical conductivity ; magnetotellurics (MT) ; partial melt ; saline fluid ; seismic bright-spots ; Tibetan Plateau</subject><ispartof>Geophysical journal international, 2003-05, Vol.153 (2), p.289-304</ispartof><rights>2003 RAS 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5630-5b5b06e8c025c44290bf47cf7c0f074e57437c2c12359d47599c75a595a921aa3</citedby><cites>FETCH-LOGICAL-a5630-5b5b06e8c025c44290bf47cf7c0f074e57437c2c12359d47599c75a595a921aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-246X.2003.01850.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-246X.2003.01850.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Shenghui</creatorcontrib><creatorcontrib>Unsworth, Martyn J.</creatorcontrib><creatorcontrib>Booker, John R.</creatorcontrib><creatorcontrib>Wei, Wenbo</creatorcontrib><creatorcontrib>Tan, Handong</creatorcontrib><creatorcontrib>Jones, Alan G.</creatorcontrib><title>Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><addtitle>Geophys. J. Int</addtitle><description>The INDEPTH project has applied modern geophysical techniques to the study of the crustal structure and tectonic evolution of the Tibetan Plateau. In the Lhasa Block, seismic reflection surveys in 1994 detected a number of bright-spots at 15–20 km depths that indicate zones of crustal fluids (aqueous fluids or partial melt). Coincident magnetotelluric (MT) data collected in 1995 detected a major zone of high electrical conductivity at the same depth as the bright-spots. Using constrained inversion, the MT data require a minimum crustal conductance of 6000 S. This abnormally high electrical conductance can be best explained by a layered model with fluids: partial melt, aqueous fluids or a combination of partial melt and aqueous fluids. The non-uniqueness of the MT method means that a wide range of melt fraction—thickness combinations for the above models could all explain the 6000 S conductance. To distinguish between these three models, other geophysical and geological data are required. Reflection seismic data suggest that a high fluid content (&gt;15 per cent) is present at the top of the layer. The amplitude-versus-offset data suggest that the top of this layer may be aqueous fluids rather than partial melt. Passive seismic data imaged a 20 km thick layer of lower fluid content that is probably partial melt. Petrological studies suggest that concentrations of aqueous fluids above 0.1 per cent at mid-crustal depth cannot be sustained. Taken together, these data show that the high conductivity in Southern Tibet is most probably the result of a relatively thin layer of aqueous fluids (100–200 m) overlying a thicker zone of partial melt (&gt;10 km).</description><subject>electrical conductance</subject><subject>electrical conductivity</subject><subject>magnetotellurics (MT)</subject><subject>partial melt</subject><subject>saline fluid</subject><subject>seismic bright-spots</subject><subject>Tibetan Plateau</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1vEzEQhi0EUkPhP_jEbZfx1zo-IARpaUKrUkEqRVwsx_GCw-46tb0i_ffsslVPIPXkkf0-M54HIUygJMCrt_uSsEoUlFebkgKwEshcQHl8hmaPD8_RDJSoCsFhc4JeprQHIJzw-QyFGxOzNw1uXZNxiNjc9S70CddN73fYdzj_dLj1u8LGPg2JGn8L_XAXO7z2W5ff40XoUo7Gd3mgYmjx6vrs_Ga9xK350bkcsmuaPnqLdyabV-hFbZrkXj-cp-j20_l6sSyuvlysFh-uCiMqBoXYii1Ubm6BCss5VbCtubS1tFCD5E5IzqSlllAm1I5LoZSVwggljKLEGHaK3kx9DzEMG6WsW5_s8BPTjetpKhWnRMohOJ-CNoaUoqv1IfrWxHtNQI-G9V6PIvUoUo-G9V_D-jig7yb0t2_c_ZM5ffF5NVYDzyY-9If_0MW_phYT5VN2x0fOxF-6kkwKvdx81_DxUnzl8kwr9gddz6Bt</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Li, Shenghui</creator><creator>Unsworth, Martyn J.</creator><creator>Booker, John R.</creator><creator>Wei, Wenbo</creator><creator>Tan, Handong</creator><creator>Jones, Alan G.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200305</creationdate><title>Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data</title><author>Li, Shenghui ; Unsworth, Martyn J. ; Booker, John R. ; Wei, Wenbo ; Tan, Handong ; Jones, Alan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5630-5b5b06e8c025c44290bf47cf7c0f074e57437c2c12359d47599c75a595a921aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>electrical conductance</topic><topic>electrical conductivity</topic><topic>magnetotellurics (MT)</topic><topic>partial melt</topic><topic>saline fluid</topic><topic>seismic bright-spots</topic><topic>Tibetan Plateau</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenghui</creatorcontrib><creatorcontrib>Unsworth, Martyn J.</creatorcontrib><creatorcontrib>Booker, John R.</creatorcontrib><creatorcontrib>Wei, Wenbo</creatorcontrib><creatorcontrib>Tan, Handong</creatorcontrib><creatorcontrib>Jones, Alan G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shenghui</au><au>Unsworth, Martyn J.</au><au>Booker, John R.</au><au>Wei, Wenbo</au><au>Tan, Handong</au><au>Jones, Alan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data</atitle><jtitle>Geophysical journal international</jtitle><stitle>Geophys. J. Int</stitle><addtitle>Geophys. J. Int</addtitle><date>2003-05</date><risdate>2003</risdate><volume>153</volume><issue>2</issue><spage>289</spage><epage>304</epage><pages>289-304</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>The INDEPTH project has applied modern geophysical techniques to the study of the crustal structure and tectonic evolution of the Tibetan Plateau. In the Lhasa Block, seismic reflection surveys in 1994 detected a number of bright-spots at 15–20 km depths that indicate zones of crustal fluids (aqueous fluids or partial melt). Coincident magnetotelluric (MT) data collected in 1995 detected a major zone of high electrical conductivity at the same depth as the bright-spots. Using constrained inversion, the MT data require a minimum crustal conductance of 6000 S. This abnormally high electrical conductance can be best explained by a layered model with fluids: partial melt, aqueous fluids or a combination of partial melt and aqueous fluids. The non-uniqueness of the MT method means that a wide range of melt fraction—thickness combinations for the above models could all explain the 6000 S conductance. To distinguish between these three models, other geophysical and geological data are required. Reflection seismic data suggest that a high fluid content (&gt;15 per cent) is present at the top of the layer. The amplitude-versus-offset data suggest that the top of this layer may be aqueous fluids rather than partial melt. Passive seismic data imaged a 20 km thick layer of lower fluid content that is probably partial melt. Petrological studies suggest that concentrations of aqueous fluids above 0.1 per cent at mid-crustal depth cannot be sustained. Taken together, these data show that the high conductivity in Southern Tibet is most probably the result of a relatively thin layer of aqueous fluids (100–200 m) overlying a thicker zone of partial melt (&gt;10 km).</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1046/j.1365-246X.2003.01850.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2003-05, Vol.153 (2), p.289-304
issn 0956-540X
1365-246X
language eng
recordid cdi_proquest_miscellaneous_27942177
source Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection
subjects electrical conductance
electrical conductivity
magnetotellurics (MT)
partial melt
saline fluid
seismic bright-spots
Tibetan Plateau
title Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20melt%20or%20aqueous%20fluid%20in%20the%20mid-crust%20of%20Southern%20Tibet?%20Constraints%20from%20INDEPTH%20magnetotelluric%20data&rft.jtitle=Geophysical%20journal%20international&rft.au=Li,%20Shenghui&rft.date=2003-05&rft.volume=153&rft.issue=2&rft.spage=289&rft.epage=304&rft.pages=289-304&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1046/j.1365-246X.2003.01850.x&rft_dat=%3Cproquest_cross%3E27942177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27942177&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-246X.2003.01850.x&rfr_iscdi=true