Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels

Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-04, Vol.95 (14), p.5877-5885
Hauptverfasser: Kozlowski, Hannah N., Malekjahani, Ayden, Li, Vanessa Y. C., Lekuti, Ayokunle A., Perusini, Stephen, Bell, Natalie G., Voisin, Veronique, Pouyabahar, Delaram, Pai, Shraddha, Bader, Gary D., Mubareka, Samira, Gubbay, Jonathan B., Chan, Warren C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5885
container_issue 14
container_start_page 5877
container_title Analytical chemistry (Washington)
container_volume 95
creator Kozlowski, Hannah N.
Malekjahani, Ayden
Li, Vanessa Y. C.
Lekuti, Ayokunle A.
Perusini, Stephen
Bell, Natalie G.
Voisin, Veronique
Pouyabahar, Delaram
Pai, Shraddha
Bader, Gary D.
Mubareka, Samira
Gubbay, Jonathan B.
Chan, Warren C. W.
description Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.
doi_str_mv 10.1021/acs.analchem.2c04630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2793991384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793991384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-7e6230b29e1ebf6571542d6d24eeb1aa25d7d69f192d2a12d4b9dbf72d0da6813</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhFYsMmZTxOnGRZKihICFBLu40c24GgPIqdLLrjF_hFvgRXfSxYsBrJc-716BByTmFIAem1kHYoalHKd10NUULAGRyQPg0RfB7HeEj6AMB8jAB65MTaDwBKgfJj0mPuze1YnzxNdN20q2VRv3mz0XTmj5vFz9c3egthClG31pvb9W4q2qKpdGsK6T11stRujmShvBthZKO09yJqXdpTcpSL0uqz7RyQ-d3t6_jef3yePIxHj75gGLZ-pDkyyDDRVGc5DyMaBqi4wkDrjAqBoYoUT3KaoEJBUQVZorI8QgVK8JiyAbna9C5N89lp26ZVYaUuS3dF09kUo4QlCWVx4NDLP-hH0xknzlExQJzE3MEDEmwoaRprjc7TpSkqYVYphXTtO3W-053vdOvbxS625V1WabUP7QQ7ADbAOr7_-N_OXxAkjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800898679</pqid></control><display><type>article</type><title>Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kozlowski, Hannah N. ; Malekjahani, Ayden ; Li, Vanessa Y. C. ; Lekuti, Ayokunle A. ; Perusini, Stephen ; Bell, Natalie G. ; Voisin, Veronique ; Pouyabahar, Delaram ; Pai, Shraddha ; Bader, Gary D. ; Mubareka, Samira ; Gubbay, Jonathan B. ; Chan, Warren C. W.</creator><creatorcontrib>Kozlowski, Hannah N. ; Malekjahani, Ayden ; Li, Vanessa Y. C. ; Lekuti, Ayokunle A. ; Perusini, Stephen ; Bell, Natalie G. ; Voisin, Veronique ; Pouyabahar, Delaram ; Pai, Shraddha ; Bader, Gary D. ; Mubareka, Samira ; Gubbay, Jonathan B. ; Chan, Warren C. W.</creatorcontrib><description>Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c04630</identifier><identifier>PMID: 37000033</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Bar codes ; Chemistry ; Conserved sequence ; COVID-19 - diagnosis ; Diagnostic systems ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Genotyping ; Humans ; Multiplexing ; Mutation ; Next-generation sequencing ; Nucleic Acids ; Nucleotides ; Quantum dots ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Tracking ; Viral diseases ; Viruses</subject><ispartof>Analytical chemistry (Washington), 2023-04, Vol.95 (14), p.5877-5885</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 11, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a325t-7e6230b29e1ebf6571542d6d24eeb1aa25d7d69f192d2a12d4b9dbf72d0da6813</cites><orcidid>0000-0001-5435-4785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c04630$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c04630$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37000033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozlowski, Hannah N.</creatorcontrib><creatorcontrib>Malekjahani, Ayden</creatorcontrib><creatorcontrib>Li, Vanessa Y. C.</creatorcontrib><creatorcontrib>Lekuti, Ayokunle A.</creatorcontrib><creatorcontrib>Perusini, Stephen</creatorcontrib><creatorcontrib>Bell, Natalie G.</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Pouyabahar, Delaram</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Mubareka, Samira</creatorcontrib><creatorcontrib>Gubbay, Jonathan B.</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><title>Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.</description><subject>Analytical chemistry</subject><subject>Bar codes</subject><subject>Chemistry</subject><subject>Conserved sequence</subject><subject>COVID-19 - diagnosis</subject><subject>Diagnostic systems</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Humans</subject><subject>Multiplexing</subject><subject>Mutation</subject><subject>Next-generation sequencing</subject><subject>Nucleic Acids</subject><subject>Nucleotides</subject><subject>Quantum dots</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Tracking</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhFYsMmZTxOnGRZKihICFBLu40c24GgPIqdLLrjF_hFvgRXfSxYsBrJc-716BByTmFIAem1kHYoalHKd10NUULAGRyQPg0RfB7HeEj6AMB8jAB65MTaDwBKgfJj0mPuze1YnzxNdN20q2VRv3mz0XTmj5vFz9c3egthClG31pvb9W4q2qKpdGsK6T11stRujmShvBthZKO09yJqXdpTcpSL0uqz7RyQ-d3t6_jef3yePIxHj75gGLZ-pDkyyDDRVGc5DyMaBqi4wkDrjAqBoYoUT3KaoEJBUQVZorI8QgVK8JiyAbna9C5N89lp26ZVYaUuS3dF09kUo4QlCWVx4NDLP-hH0xknzlExQJzE3MEDEmwoaRprjc7TpSkqYVYphXTtO3W-053vdOvbxS625V1WabUP7QQ7ADbAOr7_-N_OXxAkjkY</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Kozlowski, Hannah N.</creator><creator>Malekjahani, Ayden</creator><creator>Li, Vanessa Y. C.</creator><creator>Lekuti, Ayokunle A.</creator><creator>Perusini, Stephen</creator><creator>Bell, Natalie G.</creator><creator>Voisin, Veronique</creator><creator>Pouyabahar, Delaram</creator><creator>Pai, Shraddha</creator><creator>Bader, Gary D.</creator><creator>Mubareka, Samira</creator><creator>Gubbay, Jonathan B.</creator><creator>Chan, Warren C. W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid></search><sort><creationdate>20230411</creationdate><title>Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels</title><author>Kozlowski, Hannah N. ; Malekjahani, Ayden ; Li, Vanessa Y. C. ; Lekuti, Ayokunle A. ; Perusini, Stephen ; Bell, Natalie G. ; Voisin, Veronique ; Pouyabahar, Delaram ; Pai, Shraddha ; Bader, Gary D. ; Mubareka, Samira ; Gubbay, Jonathan B. ; Chan, Warren C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-7e6230b29e1ebf6571542d6d24eeb1aa25d7d69f192d2a12d4b9dbf72d0da6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Bar codes</topic><topic>Chemistry</topic><topic>Conserved sequence</topic><topic>COVID-19 - diagnosis</topic><topic>Diagnostic systems</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Humans</topic><topic>Multiplexing</topic><topic>Mutation</topic><topic>Next-generation sequencing</topic><topic>Nucleic Acids</topic><topic>Nucleotides</topic><topic>Quantum dots</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Tracking</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlowski, Hannah N.</creatorcontrib><creatorcontrib>Malekjahani, Ayden</creatorcontrib><creatorcontrib>Li, Vanessa Y. C.</creatorcontrib><creatorcontrib>Lekuti, Ayokunle A.</creatorcontrib><creatorcontrib>Perusini, Stephen</creatorcontrib><creatorcontrib>Bell, Natalie G.</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Pouyabahar, Delaram</creatorcontrib><creatorcontrib>Pai, Shraddha</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Mubareka, Samira</creatorcontrib><creatorcontrib>Gubbay, Jonathan B.</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlowski, Hannah N.</au><au>Malekjahani, Ayden</au><au>Li, Vanessa Y. C.</au><au>Lekuti, Ayokunle A.</au><au>Perusini, Stephen</au><au>Bell, Natalie G.</au><au>Voisin, Veronique</au><au>Pouyabahar, Delaram</au><au>Pai, Shraddha</au><au>Bader, Gary D.</au><au>Mubareka, Samira</au><au>Gubbay, Jonathan B.</au><au>Chan, Warren C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>95</volume><issue>14</issue><spage>5877</spage><epage>5885</epage><pages>5877-5885</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37000033</pmid><doi>10.1021/acs.analchem.2c04630</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-04, Vol.95 (14), p.5877-5885
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2793991384
source MEDLINE; ACS Publications
subjects Analytical chemistry
Bar codes
Chemistry
Conserved sequence
COVID-19 - diagnosis
Diagnostic systems
Genotype
Genotype & phenotype
Genotypes
Genotyping
Humans
Multiplexing
Mutation
Next-generation sequencing
Nucleic Acids
Nucleotides
Quantum dots
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Tracking
Viral diseases
Viruses
title Genotyping SARS-CoV‑2 Variants Using Ratiometric Nucleic Acid Barcode Panels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotyping%20SARS-CoV%E2%80%912%20Variants%20Using%20Ratiometric%20Nucleic%20Acid%20Barcode%20Panels&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kozlowski,%20Hannah%20N.&rft.date=2023-04-11&rft.volume=95&rft.issue=14&rft.spage=5877&rft.epage=5885&rft.pages=5877-5885&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c04630&rft_dat=%3Cproquest_cross%3E2793991384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800898679&rft_id=info:pmid/37000033&rfr_iscdi=true