MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism

The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-08, Vol.12 (20), p.e2300332-n/a
Hauptverfasser: Yanli, Zhang, Jiayao, Mo, Chunqing, Zheng, Yuting, Zeng, Zhiyan, Zhou, Yulin, Zhang, Minghan, Li, Longquan, Shao, Dehong, Yang, Wenjuan, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e2300332
container_title Advanced healthcare materials
container_volume 12
creator Yanli, Zhang
Jiayao, Mo
Chunqing, Zheng
Yuting, Zeng
Zhiyan, Zhou
Yulin, Zhang
Minghan, Li
Longquan, Shao
Dehong, Yang
Wenjuan, Yan
description The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY‐1 is designed and synthesized. To achieve its sustained releasing, the nano‐hydroxyapatite (nHA) is chosen as the carrier of MY‐1 by mixed adsorption. The results reveal that the sustainable releasing of MY‐1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY‐1 increases the expression and nuclear translocation of β‐catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY‐1 in bone regeneration. The peptide MY‐1‐loaded nHA can extend the MY‐1 releasing period in the local bone defect. Then, MY‐1 is endocytosed by parathyroid hormone 1 receptor (PTH1R) and induces the upregulation and nuclear translocation of β‐catenin, thereby promoting the expression of Hsp47 and accelerating the synthesis and secretion of collagen at early stage, thus promoting the early osteogenesis and bone regeneration.
doi_str_mv 10.1002/adhm.202300332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2793991324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847214739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-59096acb59a442072e9fe8cf62d271419eb1a4fb284a364f6e7f91f3fc087f503</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiNERavSK0dkiQuX3fpfkvVx2S5spN0iQTlwiibJuHWV2MHOFnLrI_QleDGepF62LBIXRhrZM_7NZ1tfkrxidMoo5efQ3HRTTrmgVAj-LDnhTPEJz1L1_LCX9Dg5C-GWxshSls3Yi-RYZCpGmp4kPzdff90_sJhrBw025BKsi9VqbLz7MUIPgxmQzOsaW_QwROKds0g-4TXaXcM4S6qRFLb2CMHYa3I19kiKoiAL17YQMXKBvQvmN2osWYJvx3jF5yEekuViQ-4MECCr0Ms89iONtkE7kA3WN2BN6F4mRxragGdP62ny5f3yarGarD9-KBbz9aQWueCTVFGVQV2lCqTkNOeoNM5qnfGG50wyhRUDqSs-kyAyqTPMtWJa6JrOcp1ScZq83ev23n3bYhjKzoT48xYsum0oea6EUkxwGdE3_6C3buttfF0Z5XPOZC5UpKZ7qvYuBI-67L3pwI8lo-XOw3LnYXnwMA68fpLdVh02B_yPYxFQe-C7aXH8j1w5v1ht_oo_AoUtrKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847214739</pqid></control><display><type>article</type><title>MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Yanli, Zhang ; Jiayao, Mo ; Chunqing, Zheng ; Yuting, Zeng ; Zhiyan, Zhou ; Yulin, Zhang ; Minghan, Li ; Longquan, Shao ; Dehong, Yang ; Wenjuan, Yan</creator><creatorcontrib>Yanli, Zhang ; Jiayao, Mo ; Chunqing, Zheng ; Yuting, Zeng ; Zhiyan, Zhou ; Yulin, Zhang ; Minghan, Li ; Longquan, Shao ; Dehong, Yang ; Wenjuan, Yan</creatorcontrib><description>The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY‐1 is designed and synthesized. To achieve its sustained releasing, the nano‐hydroxyapatite (nHA) is chosen as the carrier of MY‐1 by mixed adsorption. The results reveal that the sustainable releasing of MY‐1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY‐1 increases the expression and nuclear translocation of β‐catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY‐1 in bone regeneration. The peptide MY‐1‐loaded nHA can extend the MY‐1 releasing period in the local bone defect. Then, MY‐1 is endocytosed by parathyroid hormone 1 receptor (PTH1R) and induces the upregulation and nuclear translocation of β‐catenin, thereby promoting the expression of Hsp47 and accelerating the synthesis and secretion of collagen at early stage, thus promoting the early osteogenesis and bone regeneration.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202300332</identifier><identifier>PMID: 36999955</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomedical materials ; Bone growth ; Bone marrow ; Bone Regeneration ; Cell Differentiation ; Cell migration ; Collagen ; Collagen (type III) ; Collagen Type III - metabolism ; Differentiation (biology) ; Durapatite - pharmacology ; Extracellular matrix ; Extracellular Matrix - metabolism ; Heat shock proteins ; Hsp47 ; HSP47 Heat-Shock Proteins - metabolism ; Hydroxyapatite ; Mechanical properties ; Mesenchymal stem cells ; nano‐hydroxyapatite ; Nuclear transport ; Osteogenesis ; Rats ; Regeneration ; Regeneration (physiology) ; Secretion ; short peptide MY‐1 ; Stem cells ; Synthesis ; Tissue Scaffolds</subject><ispartof>Advanced healthcare materials, 2023-08, Vol.12 (20), p.e2300332-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-59096acb59a442072e9fe8cf62d271419eb1a4fb284a364f6e7f91f3fc087f503</citedby><cites>FETCH-LOGICAL-c3732-59096acb59a442072e9fe8cf62d271419eb1a4fb284a364f6e7f91f3fc087f503</cites><orcidid>0000-0002-5761-5423 ; 0000-0003-0237-0868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202300332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202300332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36999955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yanli, Zhang</creatorcontrib><creatorcontrib>Jiayao, Mo</creatorcontrib><creatorcontrib>Chunqing, Zheng</creatorcontrib><creatorcontrib>Yuting, Zeng</creatorcontrib><creatorcontrib>Zhiyan, Zhou</creatorcontrib><creatorcontrib>Yulin, Zhang</creatorcontrib><creatorcontrib>Minghan, Li</creatorcontrib><creatorcontrib>Longquan, Shao</creatorcontrib><creatorcontrib>Dehong, Yang</creatorcontrib><creatorcontrib>Wenjuan, Yan</creatorcontrib><title>MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY‐1 is designed and synthesized. To achieve its sustained releasing, the nano‐hydroxyapatite (nHA) is chosen as the carrier of MY‐1 by mixed adsorption. The results reveal that the sustainable releasing of MY‐1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY‐1 increases the expression and nuclear translocation of β‐catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY‐1 in bone regeneration. The peptide MY‐1‐loaded nHA can extend the MY‐1 releasing period in the local bone defect. Then, MY‐1 is endocytosed by parathyroid hormone 1 receptor (PTH1R) and induces the upregulation and nuclear translocation of β‐catenin, thereby promoting the expression of Hsp47 and accelerating the synthesis and secretion of collagen at early stage, thus promoting the early osteogenesis and bone regeneration.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Regeneration</subject><subject>Cell Differentiation</subject><subject>Cell migration</subject><subject>Collagen</subject><subject>Collagen (type III)</subject><subject>Collagen Type III - metabolism</subject><subject>Differentiation (biology)</subject><subject>Durapatite - pharmacology</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Heat shock proteins</subject><subject>Hsp47</subject><subject>HSP47 Heat-Shock Proteins - metabolism</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cells</subject><subject>nano‐hydroxyapatite</subject><subject>Nuclear transport</subject><subject>Osteogenesis</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Secretion</subject><subject>short peptide MY‐1</subject><subject>Stem cells</subject><subject>Synthesis</subject><subject>Tissue Scaffolds</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiNERavSK0dkiQuX3fpfkvVx2S5spN0iQTlwiibJuHWV2MHOFnLrI_QleDGepF62LBIXRhrZM_7NZ1tfkrxidMoo5efQ3HRTTrmgVAj-LDnhTPEJz1L1_LCX9Dg5C-GWxshSls3Yi-RYZCpGmp4kPzdff90_sJhrBw025BKsi9VqbLz7MUIPgxmQzOsaW_QwROKds0g-4TXaXcM4S6qRFLb2CMHYa3I19kiKoiAL17YQMXKBvQvmN2osWYJvx3jF5yEekuViQ-4MECCr0Ms89iONtkE7kA3WN2BN6F4mRxragGdP62ny5f3yarGarD9-KBbz9aQWueCTVFGVQV2lCqTkNOeoNM5qnfGG50wyhRUDqSs-kyAyqTPMtWJa6JrOcp1ScZq83ev23n3bYhjKzoT48xYsum0oea6EUkxwGdE3_6C3buttfF0Z5XPOZC5UpKZ7qvYuBI-67L3pwI8lo-XOw3LnYXnwMA68fpLdVh02B_yPYxFQe-C7aXH8j1w5v1ht_oo_AoUtrKA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yanli, Zhang</creator><creator>Jiayao, Mo</creator><creator>Chunqing, Zheng</creator><creator>Yuting, Zeng</creator><creator>Zhiyan, Zhou</creator><creator>Yulin, Zhang</creator><creator>Minghan, Li</creator><creator>Longquan, Shao</creator><creator>Dehong, Yang</creator><creator>Wenjuan, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5761-5423</orcidid><orcidid>https://orcid.org/0000-0003-0237-0868</orcidid></search><sort><creationdate>20230801</creationdate><title>MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism</title><author>Yanli, Zhang ; Jiayao, Mo ; Chunqing, Zheng ; Yuting, Zeng ; Zhiyan, Zhou ; Yulin, Zhang ; Minghan, Li ; Longquan, Shao ; Dehong, Yang ; Wenjuan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-59096acb59a442072e9fe8cf62d271419eb1a4fb284a364f6e7f91f3fc087f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Regeneration</topic><topic>Cell Differentiation</topic><topic>Cell migration</topic><topic>Collagen</topic><topic>Collagen (type III)</topic><topic>Collagen Type III - metabolism</topic><topic>Differentiation (biology)</topic><topic>Durapatite - pharmacology</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Heat shock proteins</topic><topic>Hsp47</topic><topic>HSP47 Heat-Shock Proteins - metabolism</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cells</topic><topic>nano‐hydroxyapatite</topic><topic>Nuclear transport</topic><topic>Osteogenesis</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Secretion</topic><topic>short peptide MY‐1</topic><topic>Stem cells</topic><topic>Synthesis</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanli, Zhang</creatorcontrib><creatorcontrib>Jiayao, Mo</creatorcontrib><creatorcontrib>Chunqing, Zheng</creatorcontrib><creatorcontrib>Yuting, Zeng</creatorcontrib><creatorcontrib>Zhiyan, Zhou</creatorcontrib><creatorcontrib>Yulin, Zhang</creatorcontrib><creatorcontrib>Minghan, Li</creatorcontrib><creatorcontrib>Longquan, Shao</creatorcontrib><creatorcontrib>Dehong, Yang</creatorcontrib><creatorcontrib>Wenjuan, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanli, Zhang</au><au>Jiayao, Mo</au><au>Chunqing, Zheng</au><au>Yuting, Zeng</au><au>Zhiyan, Zhou</au><au>Yulin, Zhang</au><au>Minghan, Li</au><au>Longquan, Shao</au><au>Dehong, Yang</au><au>Wenjuan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>20</issue><spage>e2300332</spage><epage>n/a</epage><pages>e2300332-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY‐1 is designed and synthesized. To achieve its sustained releasing, the nano‐hydroxyapatite (nHA) is chosen as the carrier of MY‐1 by mixed adsorption. The results reveal that the sustainable releasing of MY‐1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY‐1 increases the expression and nuclear translocation of β‐catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY‐1 in bone regeneration. The peptide MY‐1‐loaded nHA can extend the MY‐1 releasing period in the local bone defect. Then, MY‐1 is endocytosed by parathyroid hormone 1 receptor (PTH1R) and induces the upregulation and nuclear translocation of β‐catenin, thereby promoting the expression of Hsp47 and accelerating the synthesis and secretion of collagen at early stage, thus promoting the early osteogenesis and bone regeneration.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36999955</pmid><doi>10.1002/adhm.202300332</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5761-5423</orcidid><orcidid>https://orcid.org/0000-0003-0237-0868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-08, Vol.12 (20), p.e2300332-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2793991324
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biomedical materials
Bone growth
Bone marrow
Bone Regeneration
Cell Differentiation
Cell migration
Collagen
Collagen (type III)
Collagen Type III - metabolism
Differentiation (biology)
Durapatite - pharmacology
Extracellular matrix
Extracellular Matrix - metabolism
Heat shock proteins
Hsp47
HSP47 Heat-Shock Proteins - metabolism
Hydroxyapatite
Mechanical properties
Mesenchymal stem cells
nano‐hydroxyapatite
Nuclear transport
Osteogenesis
Rats
Regeneration
Regeneration (physiology)
Secretion
short peptide MY‐1
Stem cells
Synthesis
Tissue Scaffolds
title MY‐1‐Loaded Nano‐Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early‐Stage ECM via a Hsp47‐Dependent Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MY%E2%80%901%E2%80%90Loaded%20Nano%E2%80%90Hydroxyapatite%20Accelerated%20Bone%20Regeneration%20by%20Increasing%20Type%20III%20Collagen%20Deposition%20in%20Early%E2%80%90Stage%20ECM%20via%20a%20Hsp47%E2%80%90Dependent%20Mechanism&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Yanli,%20Zhang&rft.date=2023-08-01&rft.volume=12&rft.issue=20&rft.spage=e2300332&rft.epage=n/a&rft.pages=e2300332-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202300332&rft_dat=%3Cproquest_cross%3E2847214739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847214739&rft_id=info:pmid/36999955&rfr_iscdi=true