Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry

. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2023-05, Vol.68 (10), p.105001
Hauptverfasser: Correa-Alfonso, Camilo M, Withrow, Julia D, Domal, Sean J, President, Bonnie N, Dawson, Robert J, McCullum, Lucas, Beekman, Chris, Grassberger, Clemens, Paganetti, Harald, Bolch, Wesley E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105001
container_title Physics in medicine & biology
container_volume 68
creator Correa-Alfonso, Camilo M
Withrow, Julia D
Domal, Sean J
President, Bonnie N
Dawson, Robert J
McCullum, Lucas
Beekman, Chris
Grassberger, Clemens
Paganetti, Harald
Bolch, Wesley E
description . Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB). . A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. Radionuclide -values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively. . For radionuclide decays, values of (brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values of (brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides. . The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.
doi_str_mv 10.1088/1361-6560/acc926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2793989113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793989113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-770a2e0d1963cdd5f19ee1a8f5996af53236ad887e97662d0cc2a77ac9b8e90f3</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpaDbb3nsqOvZQN5K1lqVjWZJmIZAQ2rOYlcasgm2pktyw_742m6SX9jQwvPdm5htCPnL2lTOlLrmQvJKNZJdgra7lG7J6bb0lK8YErzRvmnNykfMjY5yrevOOnAuptVSbzYpMu7EkqPYJ_Eh_Q7ZTD4kOwWGf6ZMvh7ldDkh324d7OmA-VOUYkYKb-kITdphwtEjjAcYShky7kCjE2HsLxYcx0xKoHwumEXrqQvYDlnR8T8466DN-eK5r8vP66sf2prq9-77bfrut7IbzUrUtgxqZ41oK61zTcY3IQXXNvD50jaiFBKdUi7qVsnbM2hraFqzeK9SsE2vy-ZQbU_g1YS5m8Nli38OIYcqmbrXQSnMuZik7SW0KOc-XmZj8AOloODMLbLOQNQtZc4I9Wz49p0_7Ad2r4YXu3_E-RPMYpgVCNnHYG6lOsc38ExPdsumXf0j_O_oPTjaX7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793989113</pqid></control><display><type>article</type><title>Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Correa-Alfonso, Camilo M ; Withrow, Julia D ; Domal, Sean J ; President, Bonnie N ; Dawson, Robert J ; McCullum, Lucas ; Beekman, Chris ; Grassberger, Clemens ; Paganetti, Harald ; Bolch, Wesley E</creator><creatorcontrib>Correa-Alfonso, Camilo M ; Withrow, Julia D ; Domal, Sean J ; President, Bonnie N ; Dawson, Robert J ; McCullum, Lucas ; Beekman, Chris ; Grassberger, Clemens ; Paganetti, Harald ; Bolch, Wesley E</creatorcontrib><description>. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB). . A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. Radionuclide -values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively. . For radionuclide decays, values of (brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values of (brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides. . The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/acc926</identifier><identifier>PMID: 36996844</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>blood vasculature ; Brain ; ICRP reference phantoms ; Monte Carlo Method ; Phantoms, Imaging ; Radiation Dosage ; Radioisotopes ; Radiometry ; radionuclide ; radiopharmaceutical dosimetry ; Radiopharmaceuticals ; values</subject><ispartof>Physics in medicine &amp; biology, 2023-05, Vol.68 (10), p.105001</ispartof><rights>2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-770a2e0d1963cdd5f19ee1a8f5996af53236ad887e97662d0cc2a77ac9b8e90f3</citedby><cites>FETCH-LOGICAL-c411t-770a2e0d1963cdd5f19ee1a8f5996af53236ad887e97662d0cc2a77ac9b8e90f3</cites><orcidid>0000-0002-9756-6873 ; 0000-0002-7175-9968 ; 0000-0002-6257-2413 ; 0000-0001-6265-3355 ; 0000-0002-0061-5473 ; 0000-0001-9788-7987 ; 0000-0002-4425-4489 ; 0000-0002-5988-5240 ; 0000-0002-6670-7434 ; 0000-0002-0984-4088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/acc926/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36996844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Correa-Alfonso, Camilo M</creatorcontrib><creatorcontrib>Withrow, Julia D</creatorcontrib><creatorcontrib>Domal, Sean J</creatorcontrib><creatorcontrib>President, Bonnie N</creatorcontrib><creatorcontrib>Dawson, Robert J</creatorcontrib><creatorcontrib>McCullum, Lucas</creatorcontrib><creatorcontrib>Beekman, Chris</creatorcontrib><creatorcontrib>Grassberger, Clemens</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Bolch, Wesley E</creatorcontrib><title>Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB). . A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. Radionuclide -values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively. . For radionuclide decays, values of (brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values of (brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides. . The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.</description><subject>blood vasculature</subject><subject>Brain</subject><subject>ICRP reference phantoms</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radioisotopes</subject><subject>Radiometry</subject><subject>radionuclide</subject><subject>radiopharmaceutical dosimetry</subject><subject>Radiopharmaceuticals</subject><subject>values</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUFr3DAQhUVpaDbb3nsqOvZQN5K1lqVjWZJmIZAQ2rOYlcasgm2pktyw_742m6SX9jQwvPdm5htCPnL2lTOlLrmQvJKNZJdgra7lG7J6bb0lK8YErzRvmnNykfMjY5yrevOOnAuptVSbzYpMu7EkqPYJ_Eh_Q7ZTD4kOwWGf6ZMvh7ldDkh324d7OmA-VOUYkYKb-kITdphwtEjjAcYShky7kCjE2HsLxYcx0xKoHwumEXrqQvYDlnR8T8466DN-eK5r8vP66sf2prq9-77bfrut7IbzUrUtgxqZ41oK61zTcY3IQXXNvD50jaiFBKdUi7qVsnbM2hraFqzeK9SsE2vy-ZQbU_g1YS5m8Nli38OIYcqmbrXQSnMuZik7SW0KOc-XmZj8AOloODMLbLOQNQtZc4I9Wz49p0_7Ad2r4YXu3_E-RPMYpgVCNnHYG6lOsc38ExPdsumXf0j_O_oPTjaX7Q</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>Correa-Alfonso, Camilo M</creator><creator>Withrow, Julia D</creator><creator>Domal, Sean J</creator><creator>President, Bonnie N</creator><creator>Dawson, Robert J</creator><creator>McCullum, Lucas</creator><creator>Beekman, Chris</creator><creator>Grassberger, Clemens</creator><creator>Paganetti, Harald</creator><creator>Bolch, Wesley E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9756-6873</orcidid><orcidid>https://orcid.org/0000-0002-7175-9968</orcidid><orcidid>https://orcid.org/0000-0002-6257-2413</orcidid><orcidid>https://orcid.org/0000-0001-6265-3355</orcidid><orcidid>https://orcid.org/0000-0002-0061-5473</orcidid><orcidid>https://orcid.org/0000-0001-9788-7987</orcidid><orcidid>https://orcid.org/0000-0002-4425-4489</orcidid><orcidid>https://orcid.org/0000-0002-5988-5240</orcidid><orcidid>https://orcid.org/0000-0002-6670-7434</orcidid><orcidid>https://orcid.org/0000-0002-0984-4088</orcidid></search><sort><creationdate>20230521</creationdate><title>Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry</title><author>Correa-Alfonso, Camilo M ; Withrow, Julia D ; Domal, Sean J ; President, Bonnie N ; Dawson, Robert J ; McCullum, Lucas ; Beekman, Chris ; Grassberger, Clemens ; Paganetti, Harald ; Bolch, Wesley E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-770a2e0d1963cdd5f19ee1a8f5996af53236ad887e97662d0cc2a77ac9b8e90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>blood vasculature</topic><topic>Brain</topic><topic>ICRP reference phantoms</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radioisotopes</topic><topic>Radiometry</topic><topic>radionuclide</topic><topic>radiopharmaceutical dosimetry</topic><topic>Radiopharmaceuticals</topic><topic>values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa-Alfonso, Camilo M</creatorcontrib><creatorcontrib>Withrow, Julia D</creatorcontrib><creatorcontrib>Domal, Sean J</creatorcontrib><creatorcontrib>President, Bonnie N</creatorcontrib><creatorcontrib>Dawson, Robert J</creatorcontrib><creatorcontrib>McCullum, Lucas</creatorcontrib><creatorcontrib>Beekman, Chris</creatorcontrib><creatorcontrib>Grassberger, Clemens</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Bolch, Wesley E</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa-Alfonso, Camilo M</au><au>Withrow, Julia D</au><au>Domal, Sean J</au><au>President, Bonnie N</au><au>Dawson, Robert J</au><au>McCullum, Lucas</au><au>Beekman, Chris</au><au>Grassberger, Clemens</au><au>Paganetti, Harald</au><au>Bolch, Wesley E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2023-05-21</date><risdate>2023</risdate><volume>68</volume><issue>10</issue><spage>105001</spage><pages>105001-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB). . A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. Radionuclide -values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively. . For radionuclide decays, values of (brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values of (brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides. . The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36996844</pmid><doi>10.1088/1361-6560/acc926</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9756-6873</orcidid><orcidid>https://orcid.org/0000-0002-7175-9968</orcidid><orcidid>https://orcid.org/0000-0002-6257-2413</orcidid><orcidid>https://orcid.org/0000-0001-6265-3355</orcidid><orcidid>https://orcid.org/0000-0002-0061-5473</orcidid><orcidid>https://orcid.org/0000-0001-9788-7987</orcidid><orcidid>https://orcid.org/0000-0002-4425-4489</orcidid><orcidid>https://orcid.org/0000-0002-5988-5240</orcidid><orcidid>https://orcid.org/0000-0002-6670-7434</orcidid><orcidid>https://orcid.org/0000-0002-0984-4088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2023-05, Vol.68 (10), p.105001
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_2793989113
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects blood vasculature
Brain
ICRP reference phantoms
Monte Carlo Method
Phantoms, Imaging
Radiation Dosage
Radioisotopes
Radiometry
radionuclide
radiopharmaceutical dosimetry
Radiopharmaceuticals
values
title Intra-brain vascular models within the ICRP mesh-type adult reference phantoms for applications to internal dosimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intra-brain%20vascular%20models%20within%20the%20ICRP%20mesh-type%20adult%20reference%20phantoms%20for%20applications%20to%20internal%20dosimetry&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Correa-Alfonso,%20Camilo%20M&rft.date=2023-05-21&rft.volume=68&rft.issue=10&rft.spage=105001&rft.pages=105001-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/acc926&rft_dat=%3Cproquest_cross%3E2793989113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793989113&rft_id=info:pmid/36996844&rfr_iscdi=true