Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder
Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients...
Gespeichert in:
Veröffentlicht in: | Journal of affective disorders 2023-07, Vol.332, p.203-209 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | |
container_start_page | 203 |
container_title | Journal of affective disorders |
container_volume | 332 |
creator | Díaz-Zuluaga, Ana M. Vélez, Jorge I. Cuartas, Mauricio Valencia, Johanna Castaño, Mauricio Palacio, Juan David Arcos-Burgos, Mauricio López-Jaramillo, Carlos |
description | Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients to lithium.
We used machine-learning techniques (Advance Recursive Partitioned Analysis, ARPA) to build a personalized prediction framework of BD lithium response using biological, clinical, and demographical data. Using the Alda scale, we classified 172 BD I-II patients as responders or non-responders to lithium treatment. ARPA methods were used to build individual prediction frameworks and to define variable importance. Two predictive models were evaluated: 1) demographic and clinical data, and 2) demographic, clinical and ancestry data. Model performance was assessed using Receiver Operating Characteristic (ROC) curves.
The predictive model including ancestry yield the best performance (sensibility = 84.6 %, specificity = 93.8 % and AUC = 89.2 %) compared to the model without ancestry (sensibility = 50 %, Specificity = 94.5 %, and AUC = 72.2 %). This ancestry component best predicted lithium individual response. Clinical variables such as disease duration, the number of depressive episodes, the total number of affective episodes, and the number of manic episodes were also important predictors.
Ancestry component is a major predictor and significantly improves the definition of individual Lithium response in BD patients. We provide classification trees with potential bench application in the clinical setting. While this prediction framework might be applied in specific populations, the used methodology might be of general use in precision and translational medicine.
•The ancestry component is a major predictor of Lithium Response in Bipolar Disorder.•Machine learning algorithms identified a set of predictors of lithium response.•Disease trajectory variables play a major role in defining lithium response in BD.•Integrating clinical and biological variables could provide a translational framework. |
doi_str_mv | 10.1016/j.jad.2023.03.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2793988904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165032723004056</els_id><sourcerecordid>2793988904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-685ec71ba0cd30446b56118ed2678c7ca77cc2d67788e95ac09dc85f4260ebe03</originalsourceid><addsrcrecordid>eNp9kD1rHDEQhkVwiC9OfkAao9LNXkbS6WNJZYwTBwxp4lrRSnNYy-5qLekC_vfWcU5Kw8BM8bwvzEPIFwZbBkx9HbejC1sOXGyhjTTvyIZJLToumT4jm8bIDgTX5-RjKSMAqF7DB3IuVN9rxuWG_LlePJaan6lP85oWXCp1hTo6uzFlumYM0dd2pT2dYn2Mh5lmLI0sSONC6yPSmtHV-Zhs0BDXNLlMQywpB8yfyPu9mwp-ft0X5OH77e-bu-7-14-fN9f3nRdS1E4ZiV6zwYEPAnY7NUjFmMHAlTZee6e19zworY3BXjoPffBG7ndcAQ4I4oJcnXrXnJ4O7SU7x-JxmtyC6VAs173ojelh11B2Qn1OpWTc2zXH2eVny8AexdrRNrH2KNZCG2la5vK1_jDMGP4n_plswLcTgO3JvxGzLT5ikxtiRl9tSPGN-hfxtIm_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793988904</pqid></control><display><type>article</type><title>Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Díaz-Zuluaga, Ana M. ; Vélez, Jorge I. ; Cuartas, Mauricio ; Valencia, Johanna ; Castaño, Mauricio ; Palacio, Juan David ; Arcos-Burgos, Mauricio ; López-Jaramillo, Carlos</creator><creatorcontrib>Díaz-Zuluaga, Ana M. ; Vélez, Jorge I. ; Cuartas, Mauricio ; Valencia, Johanna ; Castaño, Mauricio ; Palacio, Juan David ; Arcos-Burgos, Mauricio ; López-Jaramillo, Carlos</creatorcontrib><description>Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients to lithium.
We used machine-learning techniques (Advance Recursive Partitioned Analysis, ARPA) to build a personalized prediction framework of BD lithium response using biological, clinical, and demographical data. Using the Alda scale, we classified 172 BD I-II patients as responders or non-responders to lithium treatment. ARPA methods were used to build individual prediction frameworks and to define variable importance. Two predictive models were evaluated: 1) demographic and clinical data, and 2) demographic, clinical and ancestry data. Model performance was assessed using Receiver Operating Characteristic (ROC) curves.
The predictive model including ancestry yield the best performance (sensibility = 84.6 %, specificity = 93.8 % and AUC = 89.2 %) compared to the model without ancestry (sensibility = 50 %, Specificity = 94.5 %, and AUC = 72.2 %). This ancestry component best predicted lithium individual response. Clinical variables such as disease duration, the number of depressive episodes, the total number of affective episodes, and the number of manic episodes were also important predictors.
Ancestry component is a major predictor and significantly improves the definition of individual Lithium response in BD patients. We provide classification trees with potential bench application in the clinical setting. While this prediction framework might be applied in specific populations, the used methodology might be of general use in precision and translational medicine.
•The ancestry component is a major predictor of Lithium Response in Bipolar Disorder.•Machine learning algorithms identified a set of predictors of lithium response.•Disease trajectory variables play a major role in defining lithium response in BD.•Integrating clinical and biological variables could provide a translational framework.</description><identifier>ISSN: 0165-0327</identifier><identifier>EISSN: 1573-2517</identifier><identifier>DOI: 10.1016/j.jad.2023.03.058</identifier><identifier>PMID: 36997125</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alda Scale ; Ancestry ; Bipolar disorder ; Bipolar Disorder - drug therapy ; Bipolar Disorder - genetics ; Bipolar Disorder - psychology ; Humans ; Lithium ; Lithium - therapeutic use ; Lithium Compounds - therapeutic use ; Mania - drug therapy ; Precision medicine ; Prediction ; Race ; Translational medicine</subject><ispartof>Journal of affective disorders, 2023-07, Vol.332, p.203-209</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-685ec71ba0cd30446b56118ed2678c7ca77cc2d67788e95ac09dc85f4260ebe03</citedby><cites>FETCH-LOGICAL-c353t-685ec71ba0cd30446b56118ed2678c7ca77cc2d67788e95ac09dc85f4260ebe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165032723004056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36997125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz-Zuluaga, Ana M.</creatorcontrib><creatorcontrib>Vélez, Jorge I.</creatorcontrib><creatorcontrib>Cuartas, Mauricio</creatorcontrib><creatorcontrib>Valencia, Johanna</creatorcontrib><creatorcontrib>Castaño, Mauricio</creatorcontrib><creatorcontrib>Palacio, Juan David</creatorcontrib><creatorcontrib>Arcos-Burgos, Mauricio</creatorcontrib><creatorcontrib>López-Jaramillo, Carlos</creatorcontrib><title>Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder</title><title>Journal of affective disorders</title><addtitle>J Affect Disord</addtitle><description>Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients to lithium.
We used machine-learning techniques (Advance Recursive Partitioned Analysis, ARPA) to build a personalized prediction framework of BD lithium response using biological, clinical, and demographical data. Using the Alda scale, we classified 172 BD I-II patients as responders or non-responders to lithium treatment. ARPA methods were used to build individual prediction frameworks and to define variable importance. Two predictive models were evaluated: 1) demographic and clinical data, and 2) demographic, clinical and ancestry data. Model performance was assessed using Receiver Operating Characteristic (ROC) curves.
The predictive model including ancestry yield the best performance (sensibility = 84.6 %, specificity = 93.8 % and AUC = 89.2 %) compared to the model without ancestry (sensibility = 50 %, Specificity = 94.5 %, and AUC = 72.2 %). This ancestry component best predicted lithium individual response. Clinical variables such as disease duration, the number of depressive episodes, the total number of affective episodes, and the number of manic episodes were also important predictors.
Ancestry component is a major predictor and significantly improves the definition of individual Lithium response in BD patients. We provide classification trees with potential bench application in the clinical setting. While this prediction framework might be applied in specific populations, the used methodology might be of general use in precision and translational medicine.
•The ancestry component is a major predictor of Lithium Response in Bipolar Disorder.•Machine learning algorithms identified a set of predictors of lithium response.•Disease trajectory variables play a major role in defining lithium response in BD.•Integrating clinical and biological variables could provide a translational framework.</description><subject>Alda Scale</subject><subject>Ancestry</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - drug therapy</subject><subject>Bipolar Disorder - genetics</subject><subject>Bipolar Disorder - psychology</subject><subject>Humans</subject><subject>Lithium</subject><subject>Lithium - therapeutic use</subject><subject>Lithium Compounds - therapeutic use</subject><subject>Mania - drug therapy</subject><subject>Precision medicine</subject><subject>Prediction</subject><subject>Race</subject><subject>Translational medicine</subject><issn>0165-0327</issn><issn>1573-2517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1rHDEQhkVwiC9OfkAao9LNXkbS6WNJZYwTBwxp4lrRSnNYy-5qLekC_vfWcU5Kw8BM8bwvzEPIFwZbBkx9HbejC1sOXGyhjTTvyIZJLToumT4jm8bIDgTX5-RjKSMAqF7DB3IuVN9rxuWG_LlePJaan6lP85oWXCp1hTo6uzFlumYM0dd2pT2dYn2Mh5lmLI0sSONC6yPSmtHV-Zhs0BDXNLlMQywpB8yfyPu9mwp-ft0X5OH77e-bu-7-14-fN9f3nRdS1E4ZiV6zwYEPAnY7NUjFmMHAlTZee6e19zworY3BXjoPffBG7ndcAQ4I4oJcnXrXnJ4O7SU7x-JxmtyC6VAs173ojelh11B2Qn1OpWTc2zXH2eVny8AexdrRNrH2KNZCG2la5vK1_jDMGP4n_plswLcTgO3JvxGzLT5ikxtiRl9tSPGN-hfxtIm_</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Díaz-Zuluaga, Ana M.</creator><creator>Vélez, Jorge I.</creator><creator>Cuartas, Mauricio</creator><creator>Valencia, Johanna</creator><creator>Castaño, Mauricio</creator><creator>Palacio, Juan David</creator><creator>Arcos-Burgos, Mauricio</creator><creator>López-Jaramillo, Carlos</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230701</creationdate><title>Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder</title><author>Díaz-Zuluaga, Ana M. ; Vélez, Jorge I. ; Cuartas, Mauricio ; Valencia, Johanna ; Castaño, Mauricio ; Palacio, Juan David ; Arcos-Burgos, Mauricio ; López-Jaramillo, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-685ec71ba0cd30446b56118ed2678c7ca77cc2d67788e95ac09dc85f4260ebe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alda Scale</topic><topic>Ancestry</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - drug therapy</topic><topic>Bipolar Disorder - genetics</topic><topic>Bipolar Disorder - psychology</topic><topic>Humans</topic><topic>Lithium</topic><topic>Lithium - therapeutic use</topic><topic>Lithium Compounds - therapeutic use</topic><topic>Mania - drug therapy</topic><topic>Precision medicine</topic><topic>Prediction</topic><topic>Race</topic><topic>Translational medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Zuluaga, Ana M.</creatorcontrib><creatorcontrib>Vélez, Jorge I.</creatorcontrib><creatorcontrib>Cuartas, Mauricio</creatorcontrib><creatorcontrib>Valencia, Johanna</creatorcontrib><creatorcontrib>Castaño, Mauricio</creatorcontrib><creatorcontrib>Palacio, Juan David</creatorcontrib><creatorcontrib>Arcos-Burgos, Mauricio</creatorcontrib><creatorcontrib>López-Jaramillo, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of affective disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Zuluaga, Ana M.</au><au>Vélez, Jorge I.</au><au>Cuartas, Mauricio</au><au>Valencia, Johanna</au><au>Castaño, Mauricio</au><au>Palacio, Juan David</au><au>Arcos-Burgos, Mauricio</au><au>López-Jaramillo, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder</atitle><jtitle>Journal of affective disorders</jtitle><addtitle>J Affect Disord</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>332</volume><spage>203</spage><epage>209</epage><pages>203-209</pages><issn>0165-0327</issn><eissn>1573-2517</eissn><abstract>Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients to lithium.
We used machine-learning techniques (Advance Recursive Partitioned Analysis, ARPA) to build a personalized prediction framework of BD lithium response using biological, clinical, and demographical data. Using the Alda scale, we classified 172 BD I-II patients as responders or non-responders to lithium treatment. ARPA methods were used to build individual prediction frameworks and to define variable importance. Two predictive models were evaluated: 1) demographic and clinical data, and 2) demographic, clinical and ancestry data. Model performance was assessed using Receiver Operating Characteristic (ROC) curves.
The predictive model including ancestry yield the best performance (sensibility = 84.6 %, specificity = 93.8 % and AUC = 89.2 %) compared to the model without ancestry (sensibility = 50 %, Specificity = 94.5 %, and AUC = 72.2 %). This ancestry component best predicted lithium individual response. Clinical variables such as disease duration, the number of depressive episodes, the total number of affective episodes, and the number of manic episodes were also important predictors.
Ancestry component is a major predictor and significantly improves the definition of individual Lithium response in BD patients. We provide classification trees with potential bench application in the clinical setting. While this prediction framework might be applied in specific populations, the used methodology might be of general use in precision and translational medicine.
•The ancestry component is a major predictor of Lithium Response in Bipolar Disorder.•Machine learning algorithms identified a set of predictors of lithium response.•Disease trajectory variables play a major role in defining lithium response in BD.•Integrating clinical and biological variables could provide a translational framework.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36997125</pmid><doi>10.1016/j.jad.2023.03.058</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0327 |
ispartof | Journal of affective disorders, 2023-07, Vol.332, p.203-209 |
issn | 0165-0327 1573-2517 |
language | eng |
recordid | cdi_proquest_miscellaneous_2793988904 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alda Scale Ancestry Bipolar disorder Bipolar Disorder - drug therapy Bipolar Disorder - genetics Bipolar Disorder - psychology Humans Lithium Lithium - therapeutic use Lithium Compounds - therapeutic use Mania - drug therapy Precision medicine Prediction Race Translational medicine |
title | Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancestry%20component%20as%20a%20major%20predictor%20of%20lithium%20response%20in%20the%20treatment%20of%20bipolar%20disorder&rft.jtitle=Journal%20of%20affective%20disorders&rft.au=D%C3%ADaz-Zuluaga,%20Ana%20M.&rft.date=2023-07-01&rft.volume=332&rft.spage=203&rft.epage=209&rft.pages=203-209&rft.issn=0165-0327&rft.eissn=1573-2517&rft_id=info:doi/10.1016/j.jad.2023.03.058&rft_dat=%3Cproquest_cross%3E2793988904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793988904&rft_id=info:pmid/36997125&rft_els_id=S0165032723004056&rfr_iscdi=true |