Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids

[Display omitted] •AD of concentrated VFA is greatly enhanced by stainless steel mesh and carbon fiber.•Electrogenic Ureibacillus, Limnochordia, Coprothermobacter, Ca. Caldatribacterium.•Short thick pili-like structures 150 nm in width correlate with ECM and enhanced AD. Various conductive materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2023-06, Vol.377, p.128966-128966, Article 128966
Hauptverfasser: Shekhurdina, Svetlana, Zhuravleva, Elena, Kovalev, Andrey, Andreev, Egor, Kryukov, Emil, Loiko, Natalia, Laikova, Alexandra, Popova, Nadezhda, Kovalev, Dmitriy, Vivekanand, Vivekanand, Litti, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128966
container_issue
container_start_page 128966
container_title Bioresource technology
container_volume 377
creator Shekhurdina, Svetlana
Zhuravleva, Elena
Kovalev, Andrey
Andreev, Egor
Kryukov, Emil
Loiko, Natalia
Laikova, Alexandra
Popova, Nadezhda
Kovalev, Dmitriy
Vivekanand, Vivekanand
Litti, Yuriy
description [Display omitted] •AD of concentrated VFA is greatly enhanced by stainless steel mesh and carbon fiber.•Electrogenic Ureibacillus, Limnochordia, Coprothermobacter, Ca. Caldatribacterium.•Short thick pili-like structures 150 nm in width correlate with ECM and enhanced AD. Various conductive materials and their dielectric counterparts were used to get deeper insights into contribution of direct interspecies electron transfer (DIET) in improving methanogenesis from highly concentrated volatile fatty acids (12.5 g/L). Potential CH4 yield, maximum CH4 production rate and lag phase were significantly (up to 1.4, 3.9 and 2.0 times, respectively) improved with addition of stainless-steel mesh (SM) and carbon felt (CF) compared to both control and dielectric counterparts (p 
doi_str_mv 10.1016/j.biortech.2023.128966
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2792902755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423003929</els_id><sourcerecordid>3153766460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-e6f94fc2cc5b079d612396a3f9755edd62953d12d7c978c6666c413c4f00e5e13</originalsourceid><addsrcrecordid>eNqFkc1uGyEURlHVqnGTvELEsptx-ZkBs0tlNW2lSN20a4QvlxhrZnAAW_LbF9dJt2GDBOd-n3QPIXecLTnj6stuuYkpV4TtUjAhl1ysjFLvyIKvtOyE0eo9WTCjWLcaRH9FPpWyY4xJrsVHciWVMUwKvSCndZr2Lrsaj0gxBIRKU6CQZn-Af49u9tRHHNtPjkAnVzFHNxaaZjph3bo5PeGMJRYacproNj5tx9M5AXCuLRk9PaaxNYxIg6v1RB1EX27Ih9Bi8PblviZ_Hr79Xv_oHn99_7n--thBz3jtUAXTBxAAw4Zp4xUX0igng9HDgN4rYQbpufAajF6Bagd6LqEPjOGAXF6Tz5fcfU7PByzVTrEAjqObMR2KlXyQWqlesTdRoY0wTLTihqoLCjmVkjHYfY6TyyfLmT0bsjv7asieDdmLoTZ499Jx2Ezo_4-9KmnA_QXAtpRjxGwLRGzL9DE3B9an-FbHX2iFp3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792902755</pqid></control><display><type>article</type><title>Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shekhurdina, Svetlana ; Zhuravleva, Elena ; Kovalev, Andrey ; Andreev, Egor ; Kryukov, Emil ; Loiko, Natalia ; Laikova, Alexandra ; Popova, Nadezhda ; Kovalev, Dmitriy ; Vivekanand, Vivekanand ; Litti, Yuriy</creator><creatorcontrib>Shekhurdina, Svetlana ; Zhuravleva, Elena ; Kovalev, Andrey ; Andreev, Egor ; Kryukov, Emil ; Loiko, Natalia ; Laikova, Alexandra ; Popova, Nadezhda ; Kovalev, Dmitriy ; Vivekanand, Vivekanand ; Litti, Yuriy</creatorcontrib><description>[Display omitted] •AD of concentrated VFA is greatly enhanced by stainless steel mesh and carbon fiber.•Electrogenic Ureibacillus, Limnochordia, Coprothermobacter, Ca. Caldatribacterium.•Short thick pili-like structures 150 nm in width correlate with ECM and enhanced AD. Various conductive materials and their dielectric counterparts were used to get deeper insights into contribution of direct interspecies electron transfer (DIET) in improving methanogenesis from highly concentrated volatile fatty acids (12.5 g/L). Potential CH4 yield, maximum CH4 production rate and lag phase were significantly (up to 1.4, 3.9 and 2.0 times, respectively) improved with addition of stainless-steel mesh (SM) and carbon felt (CF) compared to both control and dielectric counterparts (p &lt; 0.05). kapp increased by 82% for SM and 63% for CF compared to control (p &lt; 0.05). Short thick pili-like structures up to 150 nm in width were formed only in CF and SM biofilms, however, were more abundant for SM. Ureibacillus and Limnochordia specific for SM biofilms, and Coprothermobacter and Ca. Caldatribacterium for CF biofilms, were considered electrogenic. Promotion of DIET by conductive materials is governed by many factors, including specificity of electrogenic groups to material surface.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.128966</identifier><identifier>PMID: 36990327</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anaerobic digestion ; Anaerobiosis ; biofilm ; Biofilms ; Bioreactors ; Carbon ; Coprothermobacter ; Direct interspecies electron transfer ; Electric Conductivity ; Electroactive microorganisms ; electron transfer ; Electron Transport ; Fatty Acids, Volatile ; Methane ; methane production ; Pili-like structures ; Stainless Steel ; technology ; Ureibacillus</subject><ispartof>Bioresource technology, 2023-06, Vol.377, p.128966-128966, Article 128966</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-e6f94fc2cc5b079d612396a3f9755edd62953d12d7c978c6666c413c4f00e5e13</citedby><cites>FETCH-LOGICAL-c401t-e6f94fc2cc5b079d612396a3f9755edd62953d12d7c978c6666c413c4f00e5e13</cites><orcidid>0000-0002-1983-3454 ; 0000-0002-7458-0031 ; 0000-0001-5204-007X ; 0000-0002-5457-4603 ; 0000-0002-9008-6762 ; 0000-0002-5525-0459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2023.128966$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36990327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shekhurdina, Svetlana</creatorcontrib><creatorcontrib>Zhuravleva, Elena</creatorcontrib><creatorcontrib>Kovalev, Andrey</creatorcontrib><creatorcontrib>Andreev, Egor</creatorcontrib><creatorcontrib>Kryukov, Emil</creatorcontrib><creatorcontrib>Loiko, Natalia</creatorcontrib><creatorcontrib>Laikova, Alexandra</creatorcontrib><creatorcontrib>Popova, Nadezhda</creatorcontrib><creatorcontrib>Kovalev, Dmitriy</creatorcontrib><creatorcontrib>Vivekanand, Vivekanand</creatorcontrib><creatorcontrib>Litti, Yuriy</creatorcontrib><title>Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •AD of concentrated VFA is greatly enhanced by stainless steel mesh and carbon fiber.•Electrogenic Ureibacillus, Limnochordia, Coprothermobacter, Ca. Caldatribacterium.•Short thick pili-like structures 150 nm in width correlate with ECM and enhanced AD. Various conductive materials and their dielectric counterparts were used to get deeper insights into contribution of direct interspecies electron transfer (DIET) in improving methanogenesis from highly concentrated volatile fatty acids (12.5 g/L). Potential CH4 yield, maximum CH4 production rate and lag phase were significantly (up to 1.4, 3.9 and 2.0 times, respectively) improved with addition of stainless-steel mesh (SM) and carbon felt (CF) compared to both control and dielectric counterparts (p &lt; 0.05). kapp increased by 82% for SM and 63% for CF compared to control (p &lt; 0.05). Short thick pili-like structures up to 150 nm in width were formed only in CF and SM biofilms, however, were more abundant for SM. Ureibacillus and Limnochordia specific for SM biofilms, and Coprothermobacter and Ca. Caldatribacterium for CF biofilms, were considered electrogenic. Promotion of DIET by conductive materials is governed by many factors, including specificity of electrogenic groups to material surface.</description><subject>Anaerobic digestion</subject><subject>Anaerobiosis</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Carbon</subject><subject>Coprothermobacter</subject><subject>Direct interspecies electron transfer</subject><subject>Electric Conductivity</subject><subject>Electroactive microorganisms</subject><subject>electron transfer</subject><subject>Electron Transport</subject><subject>Fatty Acids, Volatile</subject><subject>Methane</subject><subject>methane production</subject><subject>Pili-like structures</subject><subject>Stainless Steel</subject><subject>technology</subject><subject>Ureibacillus</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uGyEURlHVqnGTvELEsptx-ZkBs0tlNW2lSN20a4QvlxhrZnAAW_LbF9dJt2GDBOd-n3QPIXecLTnj6stuuYkpV4TtUjAhl1ysjFLvyIKvtOyE0eo9WTCjWLcaRH9FPpWyY4xJrsVHciWVMUwKvSCndZr2Lrsaj0gxBIRKU6CQZn-Af49u9tRHHNtPjkAnVzFHNxaaZjph3bo5PeGMJRYacproNj5tx9M5AXCuLRk9PaaxNYxIg6v1RB1EX27Ih9Bi8PblviZ_Hr79Xv_oHn99_7n--thBz3jtUAXTBxAAw4Zp4xUX0igng9HDgN4rYQbpufAajF6Bagd6LqEPjOGAXF6Tz5fcfU7PByzVTrEAjqObMR2KlXyQWqlesTdRoY0wTLTihqoLCjmVkjHYfY6TyyfLmT0bsjv7asieDdmLoTZ499Jx2Ezo_4-9KmnA_QXAtpRjxGwLRGzL9DE3B9an-FbHX2iFp3M</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Shekhurdina, Svetlana</creator><creator>Zhuravleva, Elena</creator><creator>Kovalev, Andrey</creator><creator>Andreev, Egor</creator><creator>Kryukov, Emil</creator><creator>Loiko, Natalia</creator><creator>Laikova, Alexandra</creator><creator>Popova, Nadezhda</creator><creator>Kovalev, Dmitriy</creator><creator>Vivekanand, Vivekanand</creator><creator>Litti, Yuriy</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1983-3454</orcidid><orcidid>https://orcid.org/0000-0002-7458-0031</orcidid><orcidid>https://orcid.org/0000-0001-5204-007X</orcidid><orcidid>https://orcid.org/0000-0002-5457-4603</orcidid><orcidid>https://orcid.org/0000-0002-9008-6762</orcidid><orcidid>https://orcid.org/0000-0002-5525-0459</orcidid></search><sort><creationdate>202306</creationdate><title>Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids</title><author>Shekhurdina, Svetlana ; Zhuravleva, Elena ; Kovalev, Andrey ; Andreev, Egor ; Kryukov, Emil ; Loiko, Natalia ; Laikova, Alexandra ; Popova, Nadezhda ; Kovalev, Dmitriy ; Vivekanand, Vivekanand ; Litti, Yuriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-e6f94fc2cc5b079d612396a3f9755edd62953d12d7c978c6666c413c4f00e5e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anaerobic digestion</topic><topic>Anaerobiosis</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Carbon</topic><topic>Coprothermobacter</topic><topic>Direct interspecies electron transfer</topic><topic>Electric Conductivity</topic><topic>Electroactive microorganisms</topic><topic>electron transfer</topic><topic>Electron Transport</topic><topic>Fatty Acids, Volatile</topic><topic>Methane</topic><topic>methane production</topic><topic>Pili-like structures</topic><topic>Stainless Steel</topic><topic>technology</topic><topic>Ureibacillus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekhurdina, Svetlana</creatorcontrib><creatorcontrib>Zhuravleva, Elena</creatorcontrib><creatorcontrib>Kovalev, Andrey</creatorcontrib><creatorcontrib>Andreev, Egor</creatorcontrib><creatorcontrib>Kryukov, Emil</creatorcontrib><creatorcontrib>Loiko, Natalia</creatorcontrib><creatorcontrib>Laikova, Alexandra</creatorcontrib><creatorcontrib>Popova, Nadezhda</creatorcontrib><creatorcontrib>Kovalev, Dmitriy</creatorcontrib><creatorcontrib>Vivekanand, Vivekanand</creatorcontrib><creatorcontrib>Litti, Yuriy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekhurdina, Svetlana</au><au>Zhuravleva, Elena</au><au>Kovalev, Andrey</au><au>Andreev, Egor</au><au>Kryukov, Emil</au><au>Loiko, Natalia</au><au>Laikova, Alexandra</au><au>Popova, Nadezhda</au><au>Kovalev, Dmitriy</au><au>Vivekanand, Vivekanand</au><au>Litti, Yuriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>377</volume><spage>128966</spage><epage>128966</epage><pages>128966-128966</pages><artnum>128966</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •AD of concentrated VFA is greatly enhanced by stainless steel mesh and carbon fiber.•Electrogenic Ureibacillus, Limnochordia, Coprothermobacter, Ca. Caldatribacterium.•Short thick pili-like structures 150 nm in width correlate with ECM and enhanced AD. Various conductive materials and their dielectric counterparts were used to get deeper insights into contribution of direct interspecies electron transfer (DIET) in improving methanogenesis from highly concentrated volatile fatty acids (12.5 g/L). Potential CH4 yield, maximum CH4 production rate and lag phase were significantly (up to 1.4, 3.9 and 2.0 times, respectively) improved with addition of stainless-steel mesh (SM) and carbon felt (CF) compared to both control and dielectric counterparts (p &lt; 0.05). kapp increased by 82% for SM and 63% for CF compared to control (p &lt; 0.05). Short thick pili-like structures up to 150 nm in width were formed only in CF and SM biofilms, however, were more abundant for SM. Ureibacillus and Limnochordia specific for SM biofilms, and Coprothermobacter and Ca. Caldatribacterium for CF biofilms, were considered electrogenic. Promotion of DIET by conductive materials is governed by many factors, including specificity of electrogenic groups to material surface.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36990327</pmid><doi>10.1016/j.biortech.2023.128966</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1983-3454</orcidid><orcidid>https://orcid.org/0000-0002-7458-0031</orcidid><orcidid>https://orcid.org/0000-0001-5204-007X</orcidid><orcidid>https://orcid.org/0000-0002-5457-4603</orcidid><orcidid>https://orcid.org/0000-0002-9008-6762</orcidid><orcidid>https://orcid.org/0000-0002-5525-0459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2023-06, Vol.377, p.128966-128966, Article 128966
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2792902755
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Anaerobic digestion
Anaerobiosis
biofilm
Biofilms
Bioreactors
Carbon
Coprothermobacter
Direct interspecies electron transfer
Electric Conductivity
Electroactive microorganisms
electron transfer
Electron Transport
Fatty Acids, Volatile
Methane
methane production
Pili-like structures
Stainless Steel
technology
Ureibacillus
title Comparative effect of conductive and dielectric materials on methanogenesis from highly concentrated volatile fatty acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20effect%20of%20conductive%20and%20dielectric%20materials%20on%20methanogenesis%20from%20highly%20concentrated%20volatile%20fatty%20acids&rft.jtitle=Bioresource%20technology&rft.au=Shekhurdina,%20Svetlana&rft.date=2023-06&rft.volume=377&rft.spage=128966&rft.epage=128966&rft.pages=128966-128966&rft.artnum=128966&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.128966&rft_dat=%3Cproquest_cross%3E3153766460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792902755&rft_id=info:pmid/36990327&rft_els_id=S0960852423003929&rfr_iscdi=true