A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis
In the decomposition process of variational mode extraction (VME), it is hard to choose the approximate center frequency and the weighting coefficient reasonably. To address this issue, this paper aims to present a new bearing fault diagnosis scheme integrating VME with particle swarm optimization (...
Gespeichert in:
Veröffentlicht in: | Experimental techniques (Westport, Conn.) Conn.), 2023-04, Vol.47 (2), p.435-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 2 |
container_start_page | 435 |
container_title | Experimental techniques (Westport, Conn.) |
container_volume | 47 |
creator | Zhong, X. Xia, T. Mei, Q. |
description | In the decomposition process of variational mode extraction (VME), it is hard to choose the approximate center frequency and the weighting coefficient reasonably. To address this issue, this paper aims to present a new bearing fault diagnosis scheme integrating VME with particle swarm optimization (PSO). Firstly, a new index combining correlation coefficient, L-kurtosis and information entropy is constructed. Then, the PSO is employed to optimize the inside VME parameters by combining the new index as the fitness function. Finally, the desired mode is analyzed by envelope demodulation to identify the fault characteristics. The effectiveness of the approach is validated using the experimental data sets collected from bearings with damaged outer race. A comparison of the PSO-VME method using the weighted kurtosis (KCI) as the fitness function highlights the superiority of the new index. Furthermore, comparisons with the PSO-VMD method and fast kurtogram method further validate the efficiency and accuracy of the proposed method. |
doi_str_mv | 10.1007/s40799-022-00553-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2792549330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792549330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-6055eef455395c01acfcf7cfb7f6534fd4c068bcb1461576bde7f60eac5db41e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwA6y8ZGOwEztulm1pAalVkXhsjeNcF1d5FDuhgq_HpaxZ3cXMXM0chC4ZvWaUypvAqcxzQpOEUCpESnZHaMAkl4SJTB6jAZVpQkYjNjpFZyFsKGWCyXyA3sb4UXtdQweejEu97dwn4NflDC-he29LPNEBStw2e1vnTAX4aad9jVfRWbtv3bmo2dbjCWjvmjWe677q8K3T66YNLpyjE6urABd_d4he5rPn6T1ZrO4epuMFMWnCO5LF1gCWx-65MJRpY42VxhbSZiLltuSGZqPCFIxnTMisKCEqFLQRZcEZpEN0dfi79e1HD6FTtQsGqko30PZBJTJPBM_TlEZrcrAa34bgwaqtd7X2X4pRtcepDjhVxKl-capdDKWHUNjuZ4JXm7b3TZz0X-oH8yN5hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792549330</pqid></control><display><type>article</type><title>A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis</title><source>SpringerNature Journals</source><creator>Zhong, X. ; Xia, T. ; Mei, Q.</creator><creatorcontrib>Zhong, X. ; Xia, T. ; Mei, Q.</creatorcontrib><description>In the decomposition process of variational mode extraction (VME), it is hard to choose the approximate center frequency and the weighting coefficient reasonably. To address this issue, this paper aims to present a new bearing fault diagnosis scheme integrating VME with particle swarm optimization (PSO). Firstly, a new index combining correlation coefficient, L-kurtosis and information entropy is constructed. Then, the PSO is employed to optimize the inside VME parameters by combining the new index as the fitness function. Finally, the desired mode is analyzed by envelope demodulation to identify the fault characteristics. The effectiveness of the approach is validated using the experimental data sets collected from bearings with damaged outer race. A comparison of the PSO-VME method using the weighted kurtosis (KCI) as the fitness function highlights the superiority of the new index. Furthermore, comparisons with the PSO-VMD method and fast kurtogram method further validate the efficiency and accuracy of the proposed method.</description><identifier>ISSN: 0732-8818</identifier><identifier>EISSN: 1747-1567</identifier><identifier>DOI: 10.1007/s40799-022-00553-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bearing races ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Correlation coefficients ; Demodulation ; Entropy (Information theory) ; Fault diagnosis ; Fitness ; Kurtosis ; Materials Science ; Parameters ; Particle swarm optimization ; Research Paper</subject><ispartof>Experimental techniques (Westport, Conn.), 2023-04, Vol.47 (2), p.435-448</ispartof><rights>The Society for Experimental Mechanics, Inc 2022</rights><rights>The Society for Experimental Mechanics, Inc 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-6055eef455395c01acfcf7cfb7f6534fd4c068bcb1461576bde7f60eac5db41e3</citedby><cites>FETCH-LOGICAL-c324t-6055eef455395c01acfcf7cfb7f6534fd4c068bcb1461576bde7f60eac5db41e3</cites><orcidid>0000-0003-0762-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40799-022-00553-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40799-022-00553-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Zhong, X.</creatorcontrib><creatorcontrib>Xia, T.</creatorcontrib><creatorcontrib>Mei, Q.</creatorcontrib><title>A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis</title><title>Experimental techniques (Westport, Conn.)</title><addtitle>Exp Tech</addtitle><description>In the decomposition process of variational mode extraction (VME), it is hard to choose the approximate center frequency and the weighting coefficient reasonably. To address this issue, this paper aims to present a new bearing fault diagnosis scheme integrating VME with particle swarm optimization (PSO). Firstly, a new index combining correlation coefficient, L-kurtosis and information entropy is constructed. Then, the PSO is employed to optimize the inside VME parameters by combining the new index as the fitness function. Finally, the desired mode is analyzed by envelope demodulation to identify the fault characteristics. The effectiveness of the approach is validated using the experimental data sets collected from bearings with damaged outer race. A comparison of the PSO-VME method using the weighted kurtosis (KCI) as the fitness function highlights the superiority of the new index. Furthermore, comparisons with the PSO-VMD method and fast kurtogram method further validate the efficiency and accuracy of the proposed method.</description><subject>Bearing races</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Demodulation</subject><subject>Entropy (Information theory)</subject><subject>Fault diagnosis</subject><subject>Fitness</subject><subject>Kurtosis</subject><subject>Materials Science</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Research Paper</subject><issn>0732-8818</issn><issn>1747-1567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwA6y8ZGOwEztulm1pAalVkXhsjeNcF1d5FDuhgq_HpaxZ3cXMXM0chC4ZvWaUypvAqcxzQpOEUCpESnZHaMAkl4SJTB6jAZVpQkYjNjpFZyFsKGWCyXyA3sb4UXtdQweejEu97dwn4NflDC-he29LPNEBStw2e1vnTAX4aad9jVfRWbtv3bmo2dbjCWjvmjWe677q8K3T66YNLpyjE6urABd_d4he5rPn6T1ZrO4epuMFMWnCO5LF1gCWx-65MJRpY42VxhbSZiLltuSGZqPCFIxnTMisKCEqFLQRZcEZpEN0dfi79e1HD6FTtQsGqko30PZBJTJPBM_TlEZrcrAa34bgwaqtd7X2X4pRtcepDjhVxKl-capdDKWHUNjuZ4JXm7b3TZz0X-oH8yN5hQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhong, X.</creator><creator>Xia, T.</creator><creator>Mei, Q.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0762-0627</orcidid></search><sort><creationdate>20230401</creationdate><title>A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis</title><author>Zhong, X. ; Xia, T. ; Mei, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-6055eef455395c01acfcf7cfb7f6534fd4c068bcb1461576bde7f60eac5db41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bearing races</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Demodulation</topic><topic>Entropy (Information theory)</topic><topic>Fault diagnosis</topic><topic>Fitness</topic><topic>Kurtosis</topic><topic>Materials Science</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhong, X.</creatorcontrib><creatorcontrib>Xia, T.</creatorcontrib><creatorcontrib>Mei, Q.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Experimental techniques (Westport, Conn.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, X.</au><au>Xia, T.</au><au>Mei, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis</atitle><jtitle>Experimental techniques (Westport, Conn.)</jtitle><stitle>Exp Tech</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>47</volume><issue>2</issue><spage>435</spage><epage>448</epage><pages>435-448</pages><issn>0732-8818</issn><eissn>1747-1567</eissn><abstract>In the decomposition process of variational mode extraction (VME), it is hard to choose the approximate center frequency and the weighting coefficient reasonably. To address this issue, this paper aims to present a new bearing fault diagnosis scheme integrating VME with particle swarm optimization (PSO). Firstly, a new index combining correlation coefficient, L-kurtosis and information entropy is constructed. Then, the PSO is employed to optimize the inside VME parameters by combining the new index as the fitness function. Finally, the desired mode is analyzed by envelope demodulation to identify the fault characteristics. The effectiveness of the approach is validated using the experimental data sets collected from bearings with damaged outer race. A comparison of the PSO-VME method using the weighted kurtosis (KCI) as the fitness function highlights the superiority of the new index. Furthermore, comparisons with the PSO-VMD method and fast kurtogram method further validate the efficiency and accuracy of the proposed method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40799-022-00553-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0762-0627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0732-8818 |
ispartof | Experimental techniques (Westport, Conn.), 2023-04, Vol.47 (2), p.435-448 |
issn | 0732-8818 1747-1567 |
language | eng |
recordid | cdi_proquest_miscellaneous_2792549330 |
source | SpringerNature Journals |
subjects | Bearing races Characterization and Evaluation of Materials Chemistry and Materials Science Correlation coefficients Demodulation Entropy (Information theory) Fault diagnosis Fitness Kurtosis Materials Science Parameters Particle swarm optimization Research Paper |
title | A Parameter-Adaptive VME Method Based on Particle Swarm Optimization for Bearing Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parameter-Adaptive%20VME%20Method%20Based%20on%20Particle%20Swarm%20Optimization%20for%20Bearing%20Fault%20Diagnosis&rft.jtitle=Experimental%20techniques%20(Westport,%20Conn.)&rft.au=Zhong,%20X.&rft.date=2023-04-01&rft.volume=47&rft.issue=2&rft.spage=435&rft.epage=448&rft.pages=435-448&rft.issn=0732-8818&rft.eissn=1747-1567&rft_id=info:doi/10.1007/s40799-022-00553-w&rft_dat=%3Cproquest_cross%3E2792549330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792549330&rft_id=info:pmid/&rfr_iscdi=true |